Find the unit tangent vector to the curve defined by r(t) = (5t, - 5t, √1-t²) at t = 0.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question

3.2.7

**Problem Statement**

Find the unit tangent vector to the curve defined by

\[
\vec{r}(t) = \langle 5t, -5t, \sqrt{1 - t^2} \rangle
\]

at \( t = 0 \).

**Solution:**

To find the unit tangent vector, we need to determine the derivative of the vector function \(\vec{r}(t)\) and then evaluate it at \( t = 0 \). Then, we will normalize this vector to obtain the unit tangent vector.

1. **Differentiate \(\vec{r}(t)\):**
   \[
   \vec{r}'(t) = \left\langle \frac{d}{dt}(5t), \frac{d}{dt}(-5t), \frac{d}{dt}\left(\sqrt{1 - t^2}\right) \right\rangle
   \]
   \[
   = \langle 5, -5, \frac{-t}{\sqrt{1-t^2}} \rangle
   \]

2. **Evaluate \(\vec{r}'(t)\) at \( t = 0 \):**
   \[
   \vec{r}'(0) = \langle 5, -5, 0 \rangle
   \]

3. **Find the magnitude of \(\vec{r}'(0)\):**
   \[
   \|\vec{r}'(0)\| = \sqrt{5^2 + (-5)^2 + 0^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}
   \]

4. **Normalize \(\vec{r}'(0)\) to find the unit tangent vector \(\vec{T}(0)\):**
   \[
   \vec{T}(0) = \frac{\vec{r}'(0)}{\|\vec{r}'(0)\|} = \frac{\langle 5, -5, 0 \rangle}{5\sqrt{2}} = \left\langle \frac{5}{5\sqrt{2}}, \frac{-5}{5\sqrt{2}}, 0 \right\rangle
   \]
   \[
   = \left\langle \frac{1}{
Transcribed Image Text:**Problem Statement** Find the unit tangent vector to the curve defined by \[ \vec{r}(t) = \langle 5t, -5t, \sqrt{1 - t^2} \rangle \] at \( t = 0 \). **Solution:** To find the unit tangent vector, we need to determine the derivative of the vector function \(\vec{r}(t)\) and then evaluate it at \( t = 0 \). Then, we will normalize this vector to obtain the unit tangent vector. 1. **Differentiate \(\vec{r}(t)\):** \[ \vec{r}'(t) = \left\langle \frac{d}{dt}(5t), \frac{d}{dt}(-5t), \frac{d}{dt}\left(\sqrt{1 - t^2}\right) \right\rangle \] \[ = \langle 5, -5, \frac{-t}{\sqrt{1-t^2}} \rangle \] 2. **Evaluate \(\vec{r}'(t)\) at \( t = 0 \):** \[ \vec{r}'(0) = \langle 5, -5, 0 \rangle \] 3. **Find the magnitude of \(\vec{r}'(0)\):** \[ \|\vec{r}'(0)\| = \sqrt{5^2 + (-5)^2 + 0^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2} \] 4. **Normalize \(\vec{r}'(0)\) to find the unit tangent vector \(\vec{T}(0)\):** \[ \vec{T}(0) = \frac{\vec{r}'(0)}{\|\vec{r}'(0)\|} = \frac{\langle 5, -5, 0 \rangle}{5\sqrt{2}} = \left\langle \frac{5}{5\sqrt{2}}, \frac{-5}{5\sqrt{2}}, 0 \right\rangle \] \[ = \left\langle \frac{1}{
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning