Find the trigonometric Fourier series for the function f(x): [-T, T] → R given by the expression: sin x if x = [-T, 0] f(x) = { 0 if z € (0, π] O FS(x) = - +n=2 (n²-1) π O FS (x) = 1 +n-2 FS(x) = - (-1)" cos (nx) - sinx. O FS(x) = 2 + 1+(-1)^ n-2 (n²+1) cos(nx) - sin x. 1+(-1)" cos(nx) + sinx. + En-2 (n²-1) T 1-(-1)" Zn-2 (n²-1) -sin(nx) — sin r. 1+(-1)^ -cos(nx) + sinx. O FS(x) = - +Σn=2 (n-1)π 2п

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Find the trigonometric Fourier series for the function f(x): [-T, π] → R given by the expression:
J sinc if x = [-T, 0]
0 if x = (0, π]
f(x) =
(-1)"
O FS(x) = -²/+n=2 (n²-1) π
O FS(x) =
+-2 1+(-1)^ cos(nx) - sinx.
n=2 (²+1)
-cos(nx) - sinx.
1+(-1)" cos(nx) + sinx.
FS(x) = - +En-2 (n²-1) π
1-(-1)"
FS(x) = ² + n-2 (n²-1) π
п
FS(x) = - +-2
2π
-sin(nữ) — sin 2.
1+(-1)^
(n-1) T
-cos(nx) + sinx.
W
Transcribed Image Text:Find the trigonometric Fourier series for the function f(x): [-T, π] → R given by the expression: J sinc if x = [-T, 0] 0 if x = (0, π] f(x) = (-1)" O FS(x) = -²/+n=2 (n²-1) π O FS(x) = +-2 1+(-1)^ cos(nx) - sinx. n=2 (²+1) -cos(nx) - sinx. 1+(-1)" cos(nx) + sinx. FS(x) = - +En-2 (n²-1) π 1-(-1)" FS(x) = ² + n-2 (n²-1) π п FS(x) = - +-2 2π -sin(nữ) — sin 2. 1+(-1)^ (n-1) T -cos(nx) + sinx. W
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 38 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,