Find the trigonometric Fourier series for the function f(x): [-1, 1] → R given by the expression: f(x) = O [0 if x = [-1,0] 1+xifre (0, 1] 8 FS(x) = ³ + -1 FS(x) = ² + 1 FS(x) = ³ + Σ=1 FS(x) = ³ + Σ=1 -cos(nπx) sin(nTx)). (-1)"+1 n²π² (−1)”—¹ cos(nπx) nn (-1)"-1 n²77² - -сos(nπx) + 1+2(-1)" nn -cos(nπx) + 1+2(-1)" nn 1–2(−1) sin(nπx) 7²π² 1-2(-1)" NT ›) sin(nTx)). Tx)). (-1)"-1 sin(nax) 7² 7²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the trigonometric Fourier series for the function f(x) : [−1, 1] → R given by the
expression:
f(x) =
O
O
[0 if x = [-1,0]
11+xifre (0, 1]
FS(x) = ³ + x
f +Σ, (
n=1
FS(r) = ² + x1 (
n=1
8
FS(x) = ² + 1
FS (x) = ²/1 + Σ1
//
n=1
(-1)"+1
n²π²
(-1)^-1
NT
(-1)"-1
n² π²
cos(nлx) -
-
cos(nлx) +
1+2(-1)"
na
1+2(-1)"
nn
1-2(-1)"
cos(nπx) + ¹-2-¹) sin(nπx)
sin(nTr)).
COS
sin(nπx))
a)).
1-2(-1)"
NT
sin(nπx)
-cos(nπx) + -¹ sin(nra)).
(-1)" —1
7² 7²
Transcribed Image Text:Find the trigonometric Fourier series for the function f(x) : [−1, 1] → R given by the expression: f(x) = O O [0 if x = [-1,0] 11+xifre (0, 1] FS(x) = ³ + x f +Σ, ( n=1 FS(r) = ² + x1 ( n=1 8 FS(x) = ² + 1 FS (x) = ²/1 + Σ1 // n=1 (-1)"+1 n²π² (-1)^-1 NT (-1)"-1 n² π² cos(nлx) - - cos(nлx) + 1+2(-1)" na 1+2(-1)" nn 1-2(-1)" cos(nπx) + ¹-2-¹) sin(nπx) sin(nTr)). COS sin(nπx)) a)). 1-2(-1)" NT sin(nπx) -cos(nπx) + -¹ sin(nra)). (-1)" —1 7² 7²
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,