find the solution of the given initial value problem 11. y′+(2/t)y=cos(t^2),y(π)=0,t>0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

find the solution of the given initial value problem

11. y′+(2/t)y=cos(t^2),y(π)=0,t>0

Expert Solution
Step 1

Given differential equation is

y'+2ty= cost2

yπ=0

which is of the form

dydt+P(t) y = Q(t)

Where P=2t, Q = cos t2

Step 2

To find the integrating factor 

eP dt

P dt = 2tdt             =2 log t

 I.F.eP dt=e2 log t           =elog t2           =t2

General solution will be given by,

y eP dt=Q (t) eP dt  dt

 

Step 3

Using the general solution formula we get,

y t2=cos t2 t2  dt --- (1) 

Consider the right side of equation (1) we get,

t2 cos (t2) dt 

Integrating using integration by parts 

u = t du = dt

dv= t cost2v=sin t22

We know that, 

u dv = uv - vdu

Which implies,

t2 cos (t2) dt =t sin t22-sin t22dt --- (2)

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,