Find the probabilities for a standard normal variable Z. 1. P(Z ≤ 1.58) 2. P(Z = 1.96) 3. P(Z ≥ 2.00)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.
Z
.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
0.0 50000 50399
51197
51595
51994
53586
.50798
54776
52392 .52790 53188
.56356 56749 57142
.55172
55567
55962
57535
59871 .60257 .60642
.61026
.61409
.65173
.68793
72240
.75490
0.1 .53983 54380
0.2 .57926 58317 .58706 .59095 .59483
0.3 .61791 .62172 .62552 .62930 .63307 .63683 .64058 .64431 .64803
0.4 .65542 65910 66276 .66640 .67003 .67364 67724 68082 .68439
0.5 .69146 .69497 .69847 .70194 .70540 .70884 71226 71566 .71904
0.6 72575 .72907 73237 73565 .73891 .74215 74537 74857 75175
0.7 75804 .76115 76424 .76730 .77035 77337 .77637 77935 .78230
0.8 78814 79103 .79389 .79673 .79955 80234 .80511 .80785 81057
0.9 81594 .81859 82121 82381 82639 .82894 83147 .83398 .83646
1.0 84134 .84375 .84614 .84849 .85083 .85314 .85543 .85769 .85993
1.1 .86433 .86650 .86864
87286
.87493
.87698 .87900 88100
89251
.89435
.89617 89796 .89973
91149 .91309 91466 .91621
78524
81327
.83891
86214
.88298
.87076
.89065
90824 90988
90147
91774
1.2
1.3
1.4
1.5
92507
93822
.92647 92785 92922
93943 94062 94179
95053 .95154 95254
93056 .93189
94408
94295
.88493 88686
88877
90320 90490 90658
91924 92073 92220 92364
93319 93448 93574 93699
94738
94845
95543 95637 95728 95818
96407 96485 .96562 96638
97128 97193 97257 97320
97831
1.6 94520 94630
.94950
95352 .95449
.95994 .96080
96164
96246
96327
1.7
1.8
96784 96856
96926
.96995
97062
.95907
96712
97381 97441 .97500
97932 97982 98030 98077
1.9
97558
97615
.97670
2.0 97725 97778
97882
98124
.98169
2.1 98214
98257
98300
98341
98574
98382 98422 .98461 98500 98537
98745 98778 98809 98840
98870
2.2 98610
98645
.98679
98713
.98899
2.3
98928
98956
98983
99010
99036
99061 .99086 99111 99134
99158
2.4 .99180
99202 99224
99245
99266
99286
.99305 99324 99343
99361
99430
99446
99461
.99477 99492 99506
99520
99573
99585
99609 99621 99632
.99643
2.5 99379 .99396 .99413
2.6 99534 99547 .99560
2.7 .99653 99664 .99674
2.8 99744 99752 .99760 99767 99774 99781 99788 99795 99801
2.9 99813 99819 .99825 .99831 99836 .99841 .99846 99851 99856 99861
.99598
99702
99683 99693
99711
99720 .99728
.99736
99807
7559
22571
77040
-99031
-99830
99801
3.0 99865 99869 99874 99878 99882
3.1 99903 99906 99910 99913 .99916 99918 .99921
3.2 99931 .99934
99936 99938
99940 99942 99944
3.3 99952 99953 99955 99957 99958 99960 99961
3.4 99966 99968 99969 99970 99971 99972 99973
3.5 99977 99978 99978 .99979 99980 99981 99981
3.6 99984 99985 99985
99986
99986 99987 .99987
99988 99988
3.7 99989 99990 99990 99990 99991 99991 99992 99992 99992
3.8 99993 99993 99993 99994
99994
99994 99994 99995
99995
99995
3.9 99995 99995 99996 99996 99996 99996 99996 99996 99997 99997
.99886 99889 99893 99896 .99900
99924
99926
99929
99946 99948 99950
99962 99964 99965
99974
99975 99976
99982 99983
99983
99989
99992
7
Transcribed Image Text:STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score. Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 50000 50399 51197 51595 51994 53586 .50798 54776 52392 .52790 53188 .56356 56749 57142 .55172 55567 55962 57535 59871 .60257 .60642 .61026 .61409 .65173 .68793 72240 .75490 0.1 .53983 54380 0.2 .57926 58317 .58706 .59095 .59483 0.3 .61791 .62172 .62552 .62930 .63307 .63683 .64058 .64431 .64803 0.4 .65542 65910 66276 .66640 .67003 .67364 67724 68082 .68439 0.5 .69146 .69497 .69847 .70194 .70540 .70884 71226 71566 .71904 0.6 72575 .72907 73237 73565 .73891 .74215 74537 74857 75175 0.7 75804 .76115 76424 .76730 .77035 77337 .77637 77935 .78230 0.8 78814 79103 .79389 .79673 .79955 80234 .80511 .80785 81057 0.9 81594 .81859 82121 82381 82639 .82894 83147 .83398 .83646 1.0 84134 .84375 .84614 .84849 .85083 .85314 .85543 .85769 .85993 1.1 .86433 .86650 .86864 87286 .87493 .87698 .87900 88100 89251 .89435 .89617 89796 .89973 91149 .91309 91466 .91621 78524 81327 .83891 86214 .88298 .87076 .89065 90824 90988 90147 91774 1.2 1.3 1.4 1.5 92507 93822 .92647 92785 92922 93943 94062 94179 95053 .95154 95254 93056 .93189 94408 94295 .88493 88686 88877 90320 90490 90658 91924 92073 92220 92364 93319 93448 93574 93699 94738 94845 95543 95637 95728 95818 96407 96485 .96562 96638 97128 97193 97257 97320 97831 1.6 94520 94630 .94950 95352 .95449 .95994 .96080 96164 96246 96327 1.7 1.8 96784 96856 96926 .96995 97062 .95907 96712 97381 97441 .97500 97932 97982 98030 98077 1.9 97558 97615 .97670 2.0 97725 97778 97882 98124 .98169 2.1 98214 98257 98300 98341 98574 98382 98422 .98461 98500 98537 98745 98778 98809 98840 98870 2.2 98610 98645 .98679 98713 .98899 2.3 98928 98956 98983 99010 99036 99061 .99086 99111 99134 99158 2.4 .99180 99202 99224 99245 99266 99286 .99305 99324 99343 99361 99430 99446 99461 .99477 99492 99506 99520 99573 99585 99609 99621 99632 .99643 2.5 99379 .99396 .99413 2.6 99534 99547 .99560 2.7 .99653 99664 .99674 2.8 99744 99752 .99760 99767 99774 99781 99788 99795 99801 2.9 99813 99819 .99825 .99831 99836 .99841 .99846 99851 99856 99861 .99598 99702 99683 99693 99711 99720 .99728 .99736 99807 7559 22571 77040 -99031 -99830 99801 3.0 99865 99869 99874 99878 99882 3.1 99903 99906 99910 99913 .99916 99918 .99921 3.2 99931 .99934 99936 99938 99940 99942 99944 3.3 99952 99953 99955 99957 99958 99960 99961 3.4 99966 99968 99969 99970 99971 99972 99973 3.5 99977 99978 99978 .99979 99980 99981 99981 3.6 99984 99985 99985 99986 99986 99987 .99987 99988 99988 3.7 99989 99990 99990 99990 99991 99991 99992 99992 99992 3.8 99993 99993 99993 99994 99994 99994 99994 99995 99995 99995 3.9 99995 99995 99996 99996 99996 99996 99996 99996 99997 99997 .99886 99889 99893 99896 .99900 99924 99926 99929 99946 99948 99950 99962 99964 99965 99974 99975 99976 99982 99983 99983 99989 99992 7
Find the probabilities for a standard normal variable Z.
1. P(Z ≤ 1.58)
2. P(Z = 1.96)
3. P(Z ≥ 2.00)
4. P(-1.31 ≤ Z ≤ 2.75)
5. P(Z > - 2.56)
STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.
Z
.00
.01
.02
.03
.04
.05
.06
.07
.09
.08
.00004 .00003
.00003
.00005
.00008
.00011
00017
.00024
.00035
.00052
.00050
00074
.00071
00114
00111
00107
00104
.00100
.00164
.00159 .00154
00149
.00144
.00139
00219 .00212 .00205
00199
.00193
00272
00264
-3.9
.00005 .00005 00004 .00004 .00004 .00004 .00004
-3.8 .00007 .00007 .00007 .00006 .00006 .00006 00006 .00005 .00005
-3.7 00011
.00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008
-3.6 .00016 .00015
00015
.00014 .00014 .00013 .00013 00012 00012
-3.5 .00023 00022 .00022 00021 00020 00019 .00019 .00018 .00017
-3.4 .00034 .00032 .00031 .00030 .00029 .00028 .00027
,00026 .00025
-3.3 .00048 00047 .00045 .00043 .00042 00040 .00039 .00038 .00036
-3.2 .00069
.00066
.00064 .00062 .00060 .00058 .00056 .00054
-3.1 .00097 .00094
.00090
.00087 .00084 00082 .00079 .00076
-3.0 00135 .00131 00126 00122 .00118
-2.9 00187 00181 00175 .00169
-2.8 0.00256 .00248 00240 .00233
00226
-2.7 .00347 00336 .00326 .00317 00307
-2.6 .00466 .00453 .00440 00427 0415
-2.5 ,00621 00604 00587 00570 00554
-2.4 00820 .00798 .00776 .00755 .00734
-2.3 01072 01044 01017 .00990
.00964
-2.2 01390 01355 01321 01287 01255 01222 01191 01160
-2.1 01786
01743 01700
.01659 01618 01578 01539
-2.0 02275 02222 02169 02118 02068 02018 01970
-1.9 02872 02807 02743 02680 .02619 02559 .02500
-1.8 03593 03515 03438 03362 03288 .03216 03144 03074
-1.7 04457 04363 04272 04182 .04093 ,04006 .03920
-1.6 05480 05370
05262 05155 .05050 04947 04846 04746
-1.5 06681 06552 06426 06301 06178 06057 05938 05821 05705
08076 07927 07780 07636 .07493 07353 07215 07078
-1.3 .09680 09510 09342 09176 09012 08851 08691 08534
08379
-1.2 11507 11314 11123 .10935 .10749 10565 .10383 10204 .10027
00357
00298 .00289 .00280
.00402 .00391
00539 00523
.00714 .00695
.00480
.00379 .00368
00508 00494
.00676 .00657
.00866
.00639
.00939 .00914 .00889
.00842
.01130
01101
01500
.01463
01426
01923
01876
01831
02442
02385
02330
03005
02938
03673
03836 03754
04648
04551
05592
06944
06811
08226
09853
12507
12714
14917
12100 11900
11702
12302
14457 14231
.14686
14007
13786
-1.1 13567 13350 13136 12924
-1.0
15866 15625 15386 15151
-0.9 18406 18141 17879 17619
-0.8 21186 20897 20611 20327
17361
17106
16853
16602 16354 16109
20045
.19766
19489
19215 .18943 .18673
07
24106
22576
22270
.17106
.16602
.16354
-0.9 18406 .18141 .17879 .17619 13361
.16109
.16853
.19766 .19489 19215
.18943
.18673
-0.8 21186
20897 20611
23885 23576
27093
20327 28045
23270 .22965
26763 .26435 26109
-0.7 .24196
21476
.22363
.22065 21770
.22663
25785
25143 .24825
-0.6
.24510
25463
27425
-0.5
.30854
.30503
.30153 29806 29460
33724 .33360 .32997
29116
28096
28774
27760
28434
32636 .32276 .31918 .31561 .31207
-0.4
34458
34090
-0.3
.38209
37828
-0.2
38591
41683
42074
37448 .37070 .36693 .36317 35942
34827
35569 .35197
41294 .40905 .40517 .40129 .39743 39358 38974
.44038 .43644 43251 42858
.48006 47608
-0.1
42465
46017
45620
45224 44828
49601 49202 48803
44433
.48405
47210
.50000
46414
46812
-0.0
Transcribed Image Text:Find the probabilities for a standard normal variable Z. 1. P(Z ≤ 1.58) 2. P(Z = 1.96) 3. P(Z ≥ 2.00) 4. P(-1.31 ≤ Z ≤ 2.75) 5. P(Z > - 2.56) STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score. Z .00 .01 .02 .03 .04 .05 .06 .07 .09 .08 .00004 .00003 .00003 .00005 .00008 .00011 00017 .00024 .00035 .00052 .00050 00074 .00071 00114 00111 00107 00104 .00100 .00164 .00159 .00154 00149 .00144 .00139 00219 .00212 .00205 00199 .00193 00272 00264 -3.9 .00005 .00005 00004 .00004 .00004 .00004 .00004 -3.8 .00007 .00007 .00007 .00006 .00006 .00006 00006 .00005 .00005 -3.7 00011 .00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008 -3.6 .00016 .00015 00015 .00014 .00014 .00013 .00013 00012 00012 -3.5 .00023 00022 .00022 00021 00020 00019 .00019 .00018 .00017 -3.4 .00034 .00032 .00031 .00030 .00029 .00028 .00027 ,00026 .00025 -3.3 .00048 00047 .00045 .00043 .00042 00040 .00039 .00038 .00036 -3.2 .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 -3.1 .00097 .00094 .00090 .00087 .00084 00082 .00079 .00076 -3.0 00135 .00131 00126 00122 .00118 -2.9 00187 00181 00175 .00169 -2.8 0.00256 .00248 00240 .00233 00226 -2.7 .00347 00336 .00326 .00317 00307 -2.6 .00466 .00453 .00440 00427 0415 -2.5 ,00621 00604 00587 00570 00554 -2.4 00820 .00798 .00776 .00755 .00734 -2.3 01072 01044 01017 .00990 .00964 -2.2 01390 01355 01321 01287 01255 01222 01191 01160 -2.1 01786 01743 01700 .01659 01618 01578 01539 -2.0 02275 02222 02169 02118 02068 02018 01970 -1.9 02872 02807 02743 02680 .02619 02559 .02500 -1.8 03593 03515 03438 03362 03288 .03216 03144 03074 -1.7 04457 04363 04272 04182 .04093 ,04006 .03920 -1.6 05480 05370 05262 05155 .05050 04947 04846 04746 -1.5 06681 06552 06426 06301 06178 06057 05938 05821 05705 08076 07927 07780 07636 .07493 07353 07215 07078 -1.3 .09680 09510 09342 09176 09012 08851 08691 08534 08379 -1.2 11507 11314 11123 .10935 .10749 10565 .10383 10204 .10027 00357 00298 .00289 .00280 .00402 .00391 00539 00523 .00714 .00695 .00480 .00379 .00368 00508 00494 .00676 .00657 .00866 .00639 .00939 .00914 .00889 .00842 .01130 01101 01500 .01463 01426 01923 01876 01831 02442 02385 02330 03005 02938 03673 03836 03754 04648 04551 05592 06944 06811 08226 09853 12507 12714 14917 12100 11900 11702 12302 14457 14231 .14686 14007 13786 -1.1 13567 13350 13136 12924 -1.0 15866 15625 15386 15151 -0.9 18406 18141 17879 17619 -0.8 21186 20897 20611 20327 17361 17106 16853 16602 16354 16109 20045 .19766 19489 19215 .18943 .18673 07 24106 22576 22270 .17106 .16602 .16354 -0.9 18406 .18141 .17879 .17619 13361 .16109 .16853 .19766 .19489 19215 .18943 .18673 -0.8 21186 20897 20611 23885 23576 27093 20327 28045 23270 .22965 26763 .26435 26109 -0.7 .24196 21476 .22363 .22065 21770 .22663 25785 25143 .24825 -0.6 .24510 25463 27425 -0.5 .30854 .30503 .30153 29806 29460 33724 .33360 .32997 29116 28096 28774 27760 28434 32636 .32276 .31918 .31561 .31207 -0.4 34458 34090 -0.3 .38209 37828 -0.2 38591 41683 42074 37448 .37070 .36693 .36317 35942 34827 35569 .35197 41294 .40905 .40517 .40129 .39743 39358 38974 .44038 .43644 43251 42858 .48006 47608 -0.1 42465 46017 45620 45224 44828 49601 49202 48803 44433 .48405 47210 .50000 46414 46812 -0.0
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman