Find the phase shift of y = -2 sin (4x -) 2, 2n units to the left B) units to the left C) - units to the right D) 4m units dow. TE 8.
Find the phase shift of y = -2 sin (4x -) 2, 2n units to the left B) units to the left C) - units to the right D) 4m units dow. TE 8.
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
![### Finding the Phase Shift of a Trigonometric Function
**Problem Statement:**
6. Find the phase shift of \( y = -2 \sin \left( 4x - \frac{\pi}{2} \right) \)
**Options:**
- A) \( 2\pi \) units to the left
- B) \( \frac{\pi}{2} \) units to the left
- C) \( \frac{\pi}{8} \) units to the right
- D) \( 4\pi \) units down
**Solution:**
The phase shift for a function of the form \( y = a \sin(bx - c) \) can be determined using the formula:
\[ \text{Phase Shift} = \frac{c}{b} \]
Given the function:
\[ y = -2 \sin \left( 4x - \frac{\pi}{2} \right) \]
In this case:
- \( c = \frac{\pi}{2} \)
- \( b = 4 \)
So, the phase shift is:
\[ \frac{c}{b} = \frac{\frac{\pi}{2}}{4} = \frac{\pi}{8} \]
Since the phase shift is positive, it is to the right.
**Correct Answer:**
- C) \( \frac{\pi}{8} \) units to the right](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F357de21d-4dd5-43e5-ad45-c8ac77f9a858%2F9515fa5e-67d1-415b-ad0b-6c461edd0a3f%2Fydb3dqw.jpeg&w=3840&q=75)
Transcribed Image Text:### Finding the Phase Shift of a Trigonometric Function
**Problem Statement:**
6. Find the phase shift of \( y = -2 \sin \left( 4x - \frac{\pi}{2} \right) \)
**Options:**
- A) \( 2\pi \) units to the left
- B) \( \frac{\pi}{2} \) units to the left
- C) \( \frac{\pi}{8} \) units to the right
- D) \( 4\pi \) units down
**Solution:**
The phase shift for a function of the form \( y = a \sin(bx - c) \) can be determined using the formula:
\[ \text{Phase Shift} = \frac{c}{b} \]
Given the function:
\[ y = -2 \sin \left( 4x - \frac{\pi}{2} \right) \]
In this case:
- \( c = \frac{\pi}{2} \)
- \( b = 4 \)
So, the phase shift is:
\[ \frac{c}{b} = \frac{\frac{\pi}{2}}{4} = \frac{\pi}{8} \]
Since the phase shift is positive, it is to the right.
**Correct Answer:**
- C) \( \frac{\pi}{8} \) units to the right
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON

Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning


Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON

Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning


Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning