Find the linearization at x = a. f(x) = 1 a = 5 x3 (Express numbers in exact form. Use symbolic notation and fractions where needed.) L(x)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Linearization at a Point

**Problem Statement:**
Find the linearization at \(x = a\).

Given:
\[
f(x) = \frac{1}{x^3}, \quad a = 5
\]

(Express numbers in exact form. Use symbolic notation and fractions where needed.)

\[
L(x) = \quad \_\_\_\_\_\_
\]

**Solution Guide:**

To find the linearization \(L(x)\) of the function \(f(x)\) at \(x = a\), we use the formula:
\[
L(x) = f(a) + f'(a)(x - a)
\]

Here’s the step-by-step solution process:

1. **Calculate \(f(a)\):**
\[
f(5) = \frac{1}{5^3} = \frac{1}{125}
\]

2. **Find the derivative \(f'(x)\):**
\[
f(x) = \frac{1}{x^3}
\]
\[
f'(x) = \frac{d}{dx} \left( x^{-3} \right) = -3x^{-4} = -\frac{3}{x^4}
\]

3. **Evaluate \(f'(a)\):**
\[
f'(5) = -\frac{3}{5^4} = -\frac{3}{625}
\]

4. **Substitute these values into the linearization formula:**
\[
L(x) = \frac{1}{125} - \frac{3}{625}(x - 5)
\]

5. **Simplify the expression:**
\[
L(x) = \frac{1}{125} - \frac{3}{625}(x - 5)
\]
Notice that \(\frac{3}{625} = \frac{3}{5 \cdot 125} = \frac{3}{5 \cdot 125} = \frac{1}{25 \cdot 25} = \frac{1}{25^2} = \frac{1}{625}\).
So the expression should be simplified and multiplied by sufficient constants to obtain:

\[
L(x) = \frac{1}{125} - \frac{3}{625}x + \frac{15}{625}
\]

 Therefore, the final linearized function \( L(x) \)
Transcribed Image Text:### Linearization at a Point **Problem Statement:** Find the linearization at \(x = a\). Given: \[ f(x) = \frac{1}{x^3}, \quad a = 5 \] (Express numbers in exact form. Use symbolic notation and fractions where needed.) \[ L(x) = \quad \_\_\_\_\_\_ \] **Solution Guide:** To find the linearization \(L(x)\) of the function \(f(x)\) at \(x = a\), we use the formula: \[ L(x) = f(a) + f'(a)(x - a) \] Here’s the step-by-step solution process: 1. **Calculate \(f(a)\):** \[ f(5) = \frac{1}{5^3} = \frac{1}{125} \] 2. **Find the derivative \(f'(x)\):** \[ f(x) = \frac{1}{x^3} \] \[ f'(x) = \frac{d}{dx} \left( x^{-3} \right) = -3x^{-4} = -\frac{3}{x^4} \] 3. **Evaluate \(f'(a)\):** \[ f'(5) = -\frac{3}{5^4} = -\frac{3}{625} \] 4. **Substitute these values into the linearization formula:** \[ L(x) = \frac{1}{125} - \frac{3}{625}(x - 5) \] 5. **Simplify the expression:** \[ L(x) = \frac{1}{125} - \frac{3}{625}(x - 5) \] Notice that \(\frac{3}{625} = \frac{3}{5 \cdot 125} = \frac{3}{5 \cdot 125} = \frac{1}{25 \cdot 25} = \frac{1}{25^2} = \frac{1}{625}\). So the expression should be simplified and multiplied by sufficient constants to obtain: \[ L(x) = \frac{1}{125} - \frac{3}{625}x + \frac{15}{625} \] Therefore, the final linearized function \( L(x) \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Matrix Factorization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,