Find the linear approximation of f(x) = ln x at x = 1 and use it to estimate In(1.04).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

Please Help , thank you in advance 

**Problem Description:**

Find the linear approximation of \( f(x) = \ln x \) at \( x = 1 \) and use it to estimate \( \ln(1.04) \).

**Solution:**

To find the linear approximation of a function \( f(x) \) at a point \( x = a \), we use the formula for linear approximation:

\[ L(x) = f(a) + f'(a)(x - a) \]

1. **Identify the function and the point:**  
   \( f(x) = \ln x \), \( a = 1 \)

2. **Calculate \( f(a) \):**  
   \( f(1) = \ln 1 = 0 \)

3. **Find the derivative \( f'(x) \):**  
   \( f'(x) = \frac{1}{x} \)

4. **Calculate \( f'(a) \):**  
   \( f'(1) = \frac{1}{1} = 1 \)

5. **Apply the linear approximation formula:**  
   \( L(x) = 0 + 1(x - 1) = x - 1 \)

Now, use the linear approximation to estimate \( \ln(1.04) \):

\[ L(1.04) = 1.04 - 1 = 0.04 \]

Therefore, the estimated value of \( \ln(1.04) \) is approximately 0.04.
Transcribed Image Text:**Problem Description:** Find the linear approximation of \( f(x) = \ln x \) at \( x = 1 \) and use it to estimate \( \ln(1.04) \). **Solution:** To find the linear approximation of a function \( f(x) \) at a point \( x = a \), we use the formula for linear approximation: \[ L(x) = f(a) + f'(a)(x - a) \] 1. **Identify the function and the point:** \( f(x) = \ln x \), \( a = 1 \) 2. **Calculate \( f(a) \):** \( f(1) = \ln 1 = 0 \) 3. **Find the derivative \( f'(x) \):** \( f'(x) = \frac{1}{x} \) 4. **Calculate \( f'(a) \):** \( f'(1) = \frac{1}{1} = 1 \) 5. **Apply the linear approximation formula:** \( L(x) = 0 + 1(x - 1) = x - 1 \) Now, use the linear approximation to estimate \( \ln(1.04) \): \[ L(1.04) = 1.04 - 1 = 0.04 \] Therefore, the estimated value of \( \ln(1.04) \) is approximately 0.04.
Suppose that \( f(x) \) is a function with \( f(105) = 25 \) and \( f'(105) = 7 \). Estimate \( f(106) \).

= [Blank Input Field]
Transcribed Image Text:Suppose that \( f(x) \) is a function with \( f(105) = 25 \) and \( f'(105) = 7 \). Estimate \( f(106) \). = [Blank Input Field]
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning