Find the least-squares solution to the equation 1 0 2 x = 1 2.1. Suppose = (x₁, x₂), then X1 x2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
# Least-Squares Solution to a System of Linear Equations

**Problem Statement:**

Find the least-squares solution \( \hat{x} \) to the equation
\[ 
\begin{bmatrix}
1 & 1 \\
0 & 2 \\
1 & 1 
\end{bmatrix}
\hat{x} = 
\begin{bmatrix}
2 \\
2 \\
-4 
\end{bmatrix}.
\]

**Solution Steps:**

Suppose \( \hat{x} = (x_1, x_2) \), then we need to find the values of \( x_1 \) and \( x_2 \).

The system of equations, expressed in matrix form, is:
\[
\begin{bmatrix}
1 & 1 \\
0 & 2 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
2 \\
2 \\
-4
\end{bmatrix}.
\]

By solving this system using the least-squares method, we can determine \( x_1 \) and \( x_2 \).

**Interactive Section:**

Please fill in the following to find the solution:

\[
x_1 = \_\_\_\_\_\_\_\_\_ ,
\]

\[
x_2 = \_\_\_\_\_\_\_\_\_ .
\]
Transcribed Image Text:# Least-Squares Solution to a System of Linear Equations **Problem Statement:** Find the least-squares solution \( \hat{x} \) to the equation \[ \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \hat{x} = \begin{bmatrix} 2 \\ 2 \\ -4 \end{bmatrix}. \] **Solution Steps:** Suppose \( \hat{x} = (x_1, x_2) \), then we need to find the values of \( x_1 \) and \( x_2 \). The system of equations, expressed in matrix form, is: \[ \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -4 \end{bmatrix}. \] By solving this system using the least-squares method, we can determine \( x_1 \) and \( x_2 \). **Interactive Section:** Please fill in the following to find the solution: \[ x_1 = \_\_\_\_\_\_\_\_\_ , \] \[ x_2 = \_\_\_\_\_\_\_\_\_ . \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,