Use the factorization A= QR to find the least-squares solution of Ax = b. 1 23 }}} A = | 2 -[] N|MN|M - 13 -/3 2/3 - 01 ... . x= (Simplify your answer.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Finding the Least-Squares Solution Using QR Factorization**

To determine the least-squares solution of \( A\mathbf{x} = \mathbf{b} \) using the QR factorization, follow these steps:

1. **Given Matrices:**
   - Matrix \( A \) and vector \( \mathbf{b} \) are given as:
   
     \[
     A = \begin{bmatrix}
     2 & 3 \\
     2 & 4 \\
     1 & 1 
     \end{bmatrix}
     =
     \begin{bmatrix}
     \frac{2}{3} & -\frac{1}{3} \\
     \frac{2}{3} & \frac{2}{3} \\
     \frac{1}{3} & -\frac{2}{3} 
     \end{bmatrix}
     \begin{bmatrix}
     3 & 5 \\
     0 & 1
     \end{bmatrix}
     \]
   
     \[
     \mathbf{b} = \begin{bmatrix}
     4 \\
     2 \\
     3
     \end{bmatrix}
     \]

   Here, the matrix \( A \) is decomposed into an orthogonal matrix \( Q \) and an upper triangular matrix \( R \):
   \[
   A = QR
   \]
   
2. **Objective:**
   - The goal is to solve for the vector \( \mathbf{\hat{x}} \) that minimizes the difference between \( A\mathbf{x} \) and \( \mathbf{b} \).

3. **Solution Representation:**
   - By using the QR factorization, we convert the problem \( A\mathbf{x} = \mathbf{b} \) into:
     \[
     QR\mathbf{x} = \mathbf{b}
     \]
   - Multiply both sides by the transpose of \( Q \) (\( Q^T \)) to exploit the orthogonality of \( Q \):
     \[
     Q^T Q R \mathbf{x} = Q^T \mathbf{b}
     \]
   - Since \( Q^T Q = I \) (identity matrix):
     \[
     R \mathbf{x} = Q^T \mathbf{b}
     \]
     
4. **
Transcribed Image Text:**Finding the Least-Squares Solution Using QR Factorization** To determine the least-squares solution of \( A\mathbf{x} = \mathbf{b} \) using the QR factorization, follow these steps: 1. **Given Matrices:** - Matrix \( A \) and vector \( \mathbf{b} \) are given as: \[ A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 0 & 1 \end{bmatrix} \] \[ \mathbf{b} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} \] Here, the matrix \( A \) is decomposed into an orthogonal matrix \( Q \) and an upper triangular matrix \( R \): \[ A = QR \] 2. **Objective:** - The goal is to solve for the vector \( \mathbf{\hat{x}} \) that minimizes the difference between \( A\mathbf{x} \) and \( \mathbf{b} \). 3. **Solution Representation:** - By using the QR factorization, we convert the problem \( A\mathbf{x} = \mathbf{b} \) into: \[ QR\mathbf{x} = \mathbf{b} \] - Multiply both sides by the transpose of \( Q \) (\( Q^T \)) to exploit the orthogonality of \( Q \): \[ Q^T Q R \mathbf{x} = Q^T \mathbf{b} \] - Since \( Q^T Q = I \) (identity matrix): \[ R \mathbf{x} = Q^T \mathbf{b} \] 4. **
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,