Find the least squares solution of the system Ax = b. 1 1 H 1 2 2 1 X = A = ↓ 1 b 3 99] -2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Find the least squares solution of the system \(Ax = b\).**

Given matrices:

\[
A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}
\]

Solution:

\[
x = \begin{bmatrix} \emptybox \\ \emptybox \end{bmatrix}
\]

**Description:**

The problem involves finding the least squares solution to the linear system \(Ax = b\), where \(A\) is a \(3 \times 2\) matrix and \(b\) is a 3-dimensional vector.

- **Matrix \(A\):** 
  - Consists of three rows and two columns.
  - Elements are as follows:
    - First row: 1, 1
    - Second row: 1, 2
    - Third row: 2, 1

- **Vector \(b\):** 
  - A column vector with three elements:
    - First element: 3
    - Second element: 0
    - Third element: -2

- **Vector \(x\):**
  - Represents the solution vector with two elements, displayed as empty boxes to be filled with the solution values. Arrows indicate that a method will be used to compute these values.

The goal is to compute the values in vector \(x\) that minimize the equation \(\|Ax - b\|^2\), which is the least squares solution approach.
Transcribed Image Text:**Find the least squares solution of the system \(Ax = b\).** Given matrices: \[ A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} \] Solution: \[ x = \begin{bmatrix} \emptybox \\ \emptybox \end{bmatrix} \] **Description:** The problem involves finding the least squares solution to the linear system \(Ax = b\), where \(A\) is a \(3 \times 2\) matrix and \(b\) is a 3-dimensional vector. - **Matrix \(A\):** - Consists of three rows and two columns. - Elements are as follows: - First row: 1, 1 - Second row: 1, 2 - Third row: 2, 1 - **Vector \(b\):** - A column vector with three elements: - First element: 3 - Second element: 0 - Third element: -2 - **Vector \(x\):** - Represents the solution vector with two elements, displayed as empty boxes to be filled with the solution values. Arrows indicate that a method will be used to compute these values. The goal is to compute the values in vector \(x\) that minimize the equation \(\|Ax - b\|^2\), which is the least squares solution approach.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,