Find the Laplace transform of the following: 1. y" + 2y' + 5y = t cos(5t) - 6, y(0) = 1, y'(0) = -2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Read carefully

INSTRUCTION: Please box your final answer.
Find the Laplace transform of the following:
1. y" + 2y' + 5y = t cos(5t) - 6, y(0) = 1, y'(0)
= -2
Transcribed Image Text:INSTRUCTION: Please box your final answer. Find the Laplace transform of the following: 1. y" + 2y' + 5y = t cos(5t) - 6, y(0) = 1, y'(0) = -2
f(1) = 2¹{F(s)}
1.
1
3.
t", n=1,2,3,...
5.
√t
7.
sin (at)
9.
t sin (at)
11. sin(at)-at cos (at)
13. cos(at)-at sin(at)
15. sin (at +
(at+b)
17.
sinh(at)
at
19.
et sin (bt)
21.
eat sinh (bt)
23. teat, n=1,2,3,...
(t)= u(t-c)
25.
Heaviside Function
27. u(t)f(t-c)
ct
29. e f(t)
31. --ƒ(1)
33.
35. f'(t)
37. f(") (t)
U c
ſ'ƒ(t-1)g(t)dt
Table of Laplace Transforms
f(t) = 2¹{F(s)}
2.
eat
4.
tº,p>-1
n
6.
t¹², n=1,2, 3, ...
8.
cos(at)
10.
tcos(at)
12. sin (at) + at cos(at)
14. cos(at)+ at sin(at)
16.
cos(at+b)
18.
cosh (at)
20.
eat cos (bt)
22.
eat cosh (bt)
24. f(ct)
8 (t-c)
26.
Dirac Delta Function
28. u(t)g(t)
30. t"f(t), n=1,2,3,...
32. S f (v) dv
34. f(t+T)= f(t)
36. f"(t)
s"F(s) — s"-¹ƒ (0) — s"-² f'(0)...- sf (¹-²) (0) — ƒ(n-¹) (0)
-
F(s) = L {f(t)}
1
S
n!
Sn+1
√π
3
25²
a
s² + a²
2as
(s² + a²) ²
2a³
(s² + a² ) ²
s(s²-a²)
(s² + a²) ²
s sin (b) + acos (b)
2
2
s² + a²
a
2
s² - a²
b
(s− a)² + b²
b
(s-a)²-b²
n!
(s-a)"+¹
CS
S
e-CSF (s)
F(s-c)
00
[ F (u) du
S
F(s) G(s)
SF (s)-f(0)
F(s)=2{f(t)}
1
s-a
T(p+1)
SP+1
1.3.5... (2n-1)√
n+ ²1/₂2
2n S
S
2
s² + a²
s² - a²
(s² + a² ) ²
2as²
(s² + a²) ²
s(s² +3a²)
(s² + a²)
s cos (b)-a sin (b)
s² + a²
S
s²_a²
s-a
(s-a)² + b²
S-a
(s-a)²-b²
1
+ F(+)
C
-CS
e
e="L{g(t+c)}
(-1)" F) (s)
F(s)
S
T
frest f (1) dt
е
-ST
1-e
s²F (s)-sf (0) - f'(0)
Transcribed Image Text:f(1) = 2¹{F(s)} 1. 1 3. t", n=1,2,3,... 5. √t 7. sin (at) 9. t sin (at) 11. sin(at)-at cos (at) 13. cos(at)-at sin(at) 15. sin (at + (at+b) 17. sinh(at) at 19. et sin (bt) 21. eat sinh (bt) 23. teat, n=1,2,3,... (t)= u(t-c) 25. Heaviside Function 27. u(t)f(t-c) ct 29. e f(t) 31. --ƒ(1) 33. 35. f'(t) 37. f(") (t) U c ſ'ƒ(t-1)g(t)dt Table of Laplace Transforms f(t) = 2¹{F(s)} 2. eat 4. tº,p>-1 n 6. t¹², n=1,2, 3, ... 8. cos(at) 10. tcos(at) 12. sin (at) + at cos(at) 14. cos(at)+ at sin(at) 16. cos(at+b) 18. cosh (at) 20. eat cos (bt) 22. eat cosh (bt) 24. f(ct) 8 (t-c) 26. Dirac Delta Function 28. u(t)g(t) 30. t"f(t), n=1,2,3,... 32. S f (v) dv 34. f(t+T)= f(t) 36. f"(t) s"F(s) — s"-¹ƒ (0) — s"-² f'(0)...- sf (¹-²) (0) — ƒ(n-¹) (0) - F(s) = L {f(t)} 1 S n! Sn+1 √π 3 25² a s² + a² 2as (s² + a²) ² 2a³ (s² + a² ) ² s(s²-a²) (s² + a²) ² s sin (b) + acos (b) 2 2 s² + a² a 2 s² - a² b (s− a)² + b² b (s-a)²-b² n! (s-a)"+¹ CS S e-CSF (s) F(s-c) 00 [ F (u) du S F(s) G(s) SF (s)-f(0) F(s)=2{f(t)} 1 s-a T(p+1) SP+1 1.3.5... (2n-1)√ n+ ²1/₂2 2n S S 2 s² + a² s² - a² (s² + a² ) ² 2as² (s² + a²) ² s(s² +3a²) (s² + a²) s cos (b)-a sin (b) s² + a² S s²_a² s-a (s-a)² + b² S-a (s-a)²-b² 1 + F(+) C -CS e e="L{g(t+c)} (-1)" F) (s) F(s) S T frest f (1) dt е -ST 1-e s²F (s)-sf (0) - f'(0)
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,