Find the Laplace transform of g(t) = 4cos(4t) - 9sin(4t) + 2cos(10t) 4s 2s A G (s) = + s2+ 16 s2+ 16 s2+ 10 B G (s) = +4 s²+ 16 s2+ 100 36 2s C) G(s) = + + s2+4 s²+4 s²+ 100 4s 36 2s (D G(s) = + s2+ 16 s2+ 16 s2+ 100

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the Laplace transform of
g(t) = 4cos(4t) - 9sin(4t) + 2cos(10t)
4.s
9.
2s
A
G (s) =
%3D
s2+ 16
s2+ 16
s2+ 10
9.
B
G (s) =
s2.
+
s²+4
s²+ 16
s2+ 100
2s
36
+
+
s2+4
G (s) =
%3D
s2+4
s2+ 100
4s
36
2s
D
G (s) =
+
%3D
s2+ 16
s2+ 16 s2+ 100
Transcribed Image Text:Find the Laplace transform of g(t) = 4cos(4t) - 9sin(4t) + 2cos(10t) 4.s 9. 2s A G (s) = %3D s2+ 16 s2+ 16 s2+ 10 9. B G (s) = s2. + s²+4 s²+ 16 s2+ 100 2s 36 + + s2+4 G (s) = %3D s2+4 s2+ 100 4s 36 2s D G (s) = + %3D s2+ 16 s2+ 16 s2+ 100
19
1 7
Find the Inverse Laplace Transform of H (s)
%3D
s+2
3s – 5
A
h(t)
= 19e" – 3e" +714
|
B
h(t)
-21
= 19e
1
7
3
-14
3
4
(© h(t) = 19e"
+ 714
3
,5t
e
5t
7
+
24
1
= 19e-21
3
D)
h(t)
Transcribed Image Text:19 1 7 Find the Inverse Laplace Transform of H (s) %3D s+2 3s – 5 A h(t) = 19e" – 3e" +714 | B h(t) -21 = 19e 1 7 3 -14 3 4 (© h(t) = 19e" + 714 3 ,5t e 5t 7 + 24 1 = 19e-21 3 D) h(t)
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,