Find the laplace transform of f(t) = 2t¹ - 3e³t + 10 cos 2t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the laplace transform of
f
ƒ (t) = 2t¹ − 3e³t+10 cos 2t
-
O F (s) = 7s² -20s" +12s³−9Gs³+48s²+192x−384
OF (s)
781-20s-12x³--188³-958²-1928-384
13
OF (s)-
78"-20"-12" - 188²-92s² -1968-384
2ײ +16,² – 8,
OF (s)
7-7-20"-12¹, 188³ - 192,7-968-384
OF (s)
T«"-20" −120×'--18ײ-92<*-1968-381
7ײ_20×¹-20ײ – 188²-196ײ -192,-381
OF (s)
O F(s)
7s1_20,"_128²-48s¹ -96ײ | 192«-384
2×7 - 16.
F(s)
20+²_13ײ_4×ײ 96. 96× 38
120
Transcribed Image Text:Find the laplace transform of f ƒ (t) = 2t¹ − 3e³t+10 cos 2t - O F (s) = 7s² -20s" +12s³−9Gs³+48s²+192x−384 OF (s) 781-20s-12x³--188³-958²-1928-384 13 OF (s)- 78"-20"-12" - 188²-92s² -1968-384 2ײ +16,² – 8, OF (s) 7-7-20"-12¹, 188³ - 192,7-968-384 OF (s) T«"-20" −120×'--18ײ-92<*-1968-381 7ײ_20×¹-20ײ – 188²-196ײ -192,-381 OF (s) O F(s) 7s1_20,"_128²-48s¹ -96ײ | 192«-384 2×7 - 16. F(s) 20+²_13ײ_4×ײ 96. 96× 38 120
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,