Find the kinetic, potential, and total mechanical energies of the hydrogen atom in the first excited level, and find the wavelength of the photon emitted in a transition from that level to the ground level.

icon
Related questions
Question

Find the kinetic, potential, and total mechanical energies of the hydrogen atom in the first excited level, and find the wavelength of the photon emitted in a transition from that level to the ground level.

Expert Solution
Step 1

For a Hydrogen atom, the kinetic energy of a Hydrogen atom is the energy of its revolving electrons, The angular momentum of the electrons can be given as 

mvr=nh2πsquaring bothn sidesm2v2r2=n2h24π2m2v2=n2h24π2r2dividing both the sides of the equation by mmv2=n2h24π2mr2the kinetic energy, K=12mv2=n2h28π2mr2In the 1st excited state, n=2 ; rn=0.53×n2Z Ar=0.53×4=2.12 A

 

 

Step 2

K=4×h28π22.12×10-102=0.11 h2π2×10-20=0.0113 h2×1020K=0.0113×6.6×10-342=4.915×10-14J=3.072×10-30 eV

The potential energy is given byU(rn)=14πε0e2rn=9×109×1.6×10-1922.12×10-102=5.126×10-9 J

U=5.126×10-9 J=3.20375×1010 eV

The total Mechanical energy E=K+U   =3.072×10-30+3.20375×1010 eV   =3.20375×1010 eV

Answer: Total energy of the system E=3.20375×1010 eV

The Total kinetic energy, K=3.072×10-30 eV

The total potential energy, U=3.20375×1010 eV

 

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS