Find the inverse of 79 mod 191 using the Extended Euclidean Algorithm

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the inverse of 79 mod 191
using the Extended Euclidean Algorithm
Transcribed Image Text:Find the inverse of 79 mod 191 using the Extended Euclidean Algorithm
Expert Solution
Step 1: Finding the inverse

The symbol qi stands for the quotient obtained in step i.

We'll calculate the auxiliary number pi as we work our way through the Euclidean technique.

This number's value is specified for the first two stages as p0 = 0 and p1 = 1.

We recursively calculatepi = pi-2 - pi-1 qi-2 for the remaining steps modn.

The Euclidean algorithm's last step is reached by extending this calculation by one step.
In order to begin, the algorithm "divides" n by x.

If the final non-zero residual occurs at step k, then x has an inverse and it is pk+2 if this remainder is 1.

x lacks an inverse if the remainder is not 1.

 

79 mod 191

191=279+33             p0=0  79=233+13              p1=1  33=213+7                 p2=p0-p1q0                                                =0-2mod191=189  13=17+6                    p3=p1-p2q1                                                =1-189×2                                                =-377mod191=5        7=16+1                          p4=189-5×2                                                       =179mod191                                                         =179    6=61+0                           p5=5-179×1                                                        =-174 mod191                                                         =17                                                   p6=179-17×1                                                        =162mod191                                                         =16279162=12798=1+67191=1 mod 191

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,