Find the Inverse Laplace transforms of the following functions:   (4s + 2)/(s2 +6s + 34) 1/ [(s-2)(s-4)(s-8)]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Find the Inverse Laplace transforms of the following functions:

 

  1. (4s + 2)/(s2 +6s + 34)
  2. 1/ [(s-2)(s-4)(s-8)]

Subject : DIFFERENTIAL EQUATION
Topic: Inverse Laplace Transforms

Below is the Table of Laplace Transforms.

 

1.
3.
5.
7.
9.
f(t)=2²¹{F(s)}
1
19.
t", n=1,2,3,...
11. sin(at)-at cos(at)
21.
√t
sin(at)
t sin (at)
13. cos(at)-at sin (at)
15. sin(at+b)
17. sinh(ar)
et sin (br)
e” sinh(br)
23. te, n=1,2,3,...
u(t)= u(t-c)
Heaviside Function
25.
27. u(t)f(t-c)
29. eºf(t)
31. ƒ(1)
33. ff(t-1)g(1) dr
35. f'(t)
37. f(t)
Table of Laplace Transforms
F(s) = {f(t)}
S
L
su+1
a
s² + a²
2as
(s² + a²)²
2a³
(s² + a²)²³
s(s²_a²)
(s² + a²)²
s sin (b) + acos (b)
s² + a²
3²-d²
b
(s-a)² + b²
b
(s-a)²-B²
n!
(s-a)***
S
e¯ F (s)
F(s-c)
*F(u) du
2.
f(t)=2²¹{F(s)}
at
4. tº,p>-1
e
6., n=1,2,3,...
8. cos(at)
10. tcos(at)
20.
12. sin (at) + at cos(at)
22.
14. cos(at)+ at sin(at)
16. cos(at+b)
18.
cosh (at)
e cos (bt)
ea cosh (br)
24. f(ct)
8(t-c)
Dirac Delta Function
u. (t)g(t)
26.
28.
30. tf(t), n=1,2,3,...
32. ff(v) dv
F(s) G(s)
SF (s)-f(0) 36. f(t)
34. f(t+T)=f(t)
F(s) = £{f(t)}
1
s-a
[(p+1)
Sit
1-3-5---(2n-1)√√
2" 5"
S
s² + a²
s²-a²
(s² + a²)²
2as²
(s² + a²)²
s(s²+3a²)
(s² + a²)²
scos (b)-a sin (b)
s² + a²
S
3-0²
s-a
(s-a)² + b²
s-a
(s-a)²³-5²
e{g(t+c)}
(-1)" F(") (s)
F(s)
S
fe" f (t) dt
1-e
s²F (s)-sf (0)-f(0)
s"F(s)-5-¹ƒ (0)-5-²ƒ' (0)---sf("~²) (0) — ƒ(¹)(0)
-
Transcribed Image Text:1. 3. 5. 7. 9. f(t)=2²¹{F(s)} 1 19. t", n=1,2,3,... 11. sin(at)-at cos(at) 21. √t sin(at) t sin (at) 13. cos(at)-at sin (at) 15. sin(at+b) 17. sinh(ar) et sin (br) e” sinh(br) 23. te, n=1,2,3,... u(t)= u(t-c) Heaviside Function 25. 27. u(t)f(t-c) 29. eºf(t) 31. ƒ(1) 33. ff(t-1)g(1) dr 35. f'(t) 37. f(t) Table of Laplace Transforms F(s) = {f(t)} S L su+1 a s² + a² 2as (s² + a²)² 2a³ (s² + a²)²³ s(s²_a²) (s² + a²)² s sin (b) + acos (b) s² + a² 3²-d² b (s-a)² + b² b (s-a)²-B² n! (s-a)*** S e¯ F (s) F(s-c) *F(u) du 2. f(t)=2²¹{F(s)} at 4. tº,p>-1 e 6., n=1,2,3,... 8. cos(at) 10. tcos(at) 20. 12. sin (at) + at cos(at) 22. 14. cos(at)+ at sin(at) 16. cos(at+b) 18. cosh (at) e cos (bt) ea cosh (br) 24. f(ct) 8(t-c) Dirac Delta Function u. (t)g(t) 26. 28. 30. tf(t), n=1,2,3,... 32. ff(v) dv F(s) G(s) SF (s)-f(0) 36. f(t) 34. f(t+T)=f(t) F(s) = £{f(t)} 1 s-a [(p+1) Sit 1-3-5---(2n-1)√√ 2" 5" S s² + a² s²-a² (s² + a²)² 2as² (s² + a²)² s(s²+3a²) (s² + a²)² scos (b)-a sin (b) s² + a² S 3-0² s-a (s-a)² + b² s-a (s-a)²³-5² e{g(t+c)} (-1)" F(") (s) F(s) S fe" f (t) dt 1-e s²F (s)-sf (0)-f(0) s"F(s)-5-¹ƒ (0)-5-²ƒ' (0)---sf("~²) (0) — ƒ(¹)(0) -
Table Notes
1. This list is not a complete listing of Laplace transforms and only contains some of
the more commonly used Laplace transforms and formulas.
2. Recall the definition of hyperbolic functions.
e' + e
cosh (
2
sinh
3. Be careful when using "normal" trig function vs. hyperbolic functions. The only
difference in the formulas is the "+ a²" for the "normal" trig functions becomes a
"- a*** for the hyperbolic functions!
4. Formula #4 uses the Gamma function which is defined as
r(t)=x²²dx
If n is a positive integer then,
T(n+1)=n!
The Gamma function is an extension of the normal factorial function. Here are a
couple of quick facts for the Gamma function
I(p+1)=pr (p)
p(p+1)(p+2).(p+n−1)=-
(2)=√
I(p+n)
I(p)
Transcribed Image Text:Table Notes 1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas. 2. Recall the definition of hyperbolic functions. e' + e cosh ( 2 sinh 3. Be careful when using "normal" trig function vs. hyperbolic functions. The only difference in the formulas is the "+ a²" for the "normal" trig functions becomes a "- a*** for the hyperbolic functions! 4. Formula #4 uses the Gamma function which is defined as r(t)=x²²dx If n is a positive integer then, T(n+1)=n! The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function I(p+1)=pr (p) p(p+1)(p+2).(p+n−1)=- (2)=√ I(p+n) I(p)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,