Determine the inverse Laplace transform of the function below. 11 (2s+3)4 Click here to view the table of Laplace transforms. Click here to view the table of properties of Laplace transforms. 11 (2s+3)4 -0 Properties of Laplace Transforms L{f+g} = L{f} + L{g} L{cf} c{f} for any constant c = Leatf(t)} (s) = L{f}(s-a) L {f') (s) = s£{f}(s)-f(0) L {f'') (s) = s²L{f}(s) - sf(0) - f'(0) L{f(n)} (s) = s"L{f}(s) – sn-1f(0) -sn-2f'(0)-... -f(n-1) (0) dn £{tf(t)} (s) = (-1)^ (L{f}(s)) dsn -S

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Inverse Laplace Transform Example:

### Problem:
Determine the inverse Laplace transform of the function below:  
\[ \frac{11}{(2s + 3)^4} \]

- **Links:**  
  - [Table of Laplace Transforms](#)  
  - [Properties of Laplace Transforms](#)

### Laplace Transform Notation:
\[ \mathcal{L}^{-1} \left\{ \frac{11}{(2s + 3)^4} \right\} = \square \]

---

## Properties of Laplace Transforms:

### Key Properties:
1. \(\mathcal{L}\{f + g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\}\)
2. \(\mathcal{L}\{cf\} = c\mathcal{L}\{f\}\) for any constant \(c\)
3. \(\mathcal{L}\{e^{at}f(t)\} = \mathcal{L}\{f(s - a)\}\)
4. \(\mathcal{L}\{f'(t)\}(s) = s\mathcal{L}\{f\}(s) - f(0)\)
5. \(\mathcal{L}\{f''(t)\}(s) = s^2\mathcal{L}\{f\}(s) - sf(0) - f'(0)\)
6. \(\mathcal{L}\{f^{(n)}(t)\}(s) = s^n\mathcal{L}\{f(s)\} - s^{n-1}f(0) - \dots - f^{(n-1)}(0)\)
7. \(\mathcal{L}\{t^n f(t)\}(s) = (-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f(s)\})\)
8. \(\mathcal{L}^{-1} \{F_1 + F_2\} = \mathcal{L}^{-1} \{F_1\} + \mathcal{L}^{-1} \{F_2\}\)
9. \(\mathcal{L}^{-1} \{cf\} = c
Transcribed Image Text:## Inverse Laplace Transform Example: ### Problem: Determine the inverse Laplace transform of the function below: \[ \frac{11}{(2s + 3)^4} \] - **Links:** - [Table of Laplace Transforms](#) - [Properties of Laplace Transforms](#) ### Laplace Transform Notation: \[ \mathcal{L}^{-1} \left\{ \frac{11}{(2s + 3)^4} \right\} = \square \] --- ## Properties of Laplace Transforms: ### Key Properties: 1. \(\mathcal{L}\{f + g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\}\) 2. \(\mathcal{L}\{cf\} = c\mathcal{L}\{f\}\) for any constant \(c\) 3. \(\mathcal{L}\{e^{at}f(t)\} = \mathcal{L}\{f(s - a)\}\) 4. \(\mathcal{L}\{f'(t)\}(s) = s\mathcal{L}\{f\}(s) - f(0)\) 5. \(\mathcal{L}\{f''(t)\}(s) = s^2\mathcal{L}\{f\}(s) - sf(0) - f'(0)\) 6. \(\mathcal{L}\{f^{(n)}(t)\}(s) = s^n\mathcal{L}\{f(s)\} - s^{n-1}f(0) - \dots - f^{(n-1)}(0)\) 7. \(\mathcal{L}\{t^n f(t)\}(s) = (-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f(s)\})\) 8. \(\mathcal{L}^{-1} \{F_1 + F_2\} = \mathcal{L}^{-1} \{F_1\} + \mathcal{L}^{-1} \{F_2\}\) 9. \(\mathcal{L}^{-1} \{cf\} = c
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,