Determine ¹{F}. F(s) = 4s²-15s+8 s(s-3)(s-4) Click here to view the table of Laplace transforms. Click here to view the table of properties of Laplace transforms.
Determine ¹{F}. F(s) = 4s²-15s+8 s(s-3)(s-4) Click here to view the table of Laplace transforms. Click here to view the table of properties of Laplace transforms.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
6 help
![**Educational Content on Laplace Transforms**
---
### Problem Statement:
Determine \( \mathcal{L}^{-1} \{ F \} \).
\[ F(s) = \frac{4s^2 - 15s + 8}{s(s - 3)(s - 4)} \]
---
### Resources:
- [Click here to view the table of Laplace transforms.](#)
- [Click here to view the table of properties of Laplace transforms.](#)
---
### Solution:
\[ \mathcal{L}^{-1} \{ F \} = \boxed{} \]
---
This problem involves taking the inverse Laplace transform of a rational function \( F(s) \). The expression consists of a polynomial in the numerator \( 4s^2 - 15s + 8 \) and a product of linear factors \( s(s - 3)(s - 4) \) in the denominator.
To solve it, one would generally:
1. Perform partial fraction decomposition of \( F(s) \).
2. Use the inverse Laplace transform properties and tables to find the corresponding time-domain function \( f(t) \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbbba0909-7b4f-4e80-8e24-06dfda2d061e%2F837731d5-8a65-4fcd-bac6-3e7211ebdcad%2Fqpot9ur_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Educational Content on Laplace Transforms**
---
### Problem Statement:
Determine \( \mathcal{L}^{-1} \{ F \} \).
\[ F(s) = \frac{4s^2 - 15s + 8}{s(s - 3)(s - 4)} \]
---
### Resources:
- [Click here to view the table of Laplace transforms.](#)
- [Click here to view the table of properties of Laplace transforms.](#)
---
### Solution:
\[ \mathcal{L}^{-1} \{ F \} = \boxed{} \]
---
This problem involves taking the inverse Laplace transform of a rational function \( F(s) \). The expression consists of a polynomial in the numerator \( 4s^2 - 15s + 8 \) and a product of linear factors \( s(s - 3)(s - 4) \) in the denominator.
To solve it, one would generally:
1. Perform partial fraction decomposition of \( F(s) \).
2. Use the inverse Laplace transform properties and tables to find the corresponding time-domain function \( f(t) \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)