Find the inverse Laplace transform of F (s) = 5s+2 %3D s² (s²–1) Of (t) = 5 – 2t - že' +e Of (t) = -5 + 2t + e' +e %3D O f (t) = -5+ 2t – e' + + že O f (t) = -5 – 2t + e' +e

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

9) Please help on following multiple choice ASAP!

**Problem Statement:**

Find the inverse Laplace transform of 

\[ F(s) = \frac{5s+2}{s^2(s^2-1)} \]

**Options:**

1. \( f(t) = 5 - 2t - \frac{7}{2}e^t + \frac{3}{2}e^{-t} \)

2. \( f(t) = -5 + 2t + \frac{7}{2}e^t + \frac{3}{2}e^{-t} \)

3. \( f(t) = -5 + 2t - \frac{7}{2}e^t + \frac{3}{2}e^{-t} \)

4. \( f(t) = -5 - 2t + \frac{7}{2}e^t + \frac{3}{2}e^{-t} \)
Transcribed Image Text:**Problem Statement:** Find the inverse Laplace transform of \[ F(s) = \frac{5s+2}{s^2(s^2-1)} \] **Options:** 1. \( f(t) = 5 - 2t - \frac{7}{2}e^t + \frac{3}{2}e^{-t} \) 2. \( f(t) = -5 + 2t + \frac{7}{2}e^t + \frac{3}{2}e^{-t} \) 3. \( f(t) = -5 + 2t - \frac{7}{2}e^t + \frac{3}{2}e^{-t} \) 4. \( f(t) = -5 - 2t + \frac{7}{2}e^t + \frac{3}{2}e^{-t} \)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,