find the interest rate with annual compunding that makes the statement true.  782$ grows to 1071.53$ in 10 years answer is 3.2%

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

find the interest rate with annual compunding that makes the statement true. 

782$ grows to 1071.53$ in 10 years

answer is 3.2%

 

**Formulas – CH. 4-1332**

**Simple Interest**
1) \( I = Prt \)
2) \( A = P + Prt \)
3) \( A = P(1 + rt) \)

**Compound Interest**
- Formula for interest paid \( n \) times per year:
4) \( A = P \left( 1 + \frac{\text{APR}}{n} \right)^{nY} \)
5) Continuous compounding:  
   \( A = P \cdot e^{(\text{APR} \cdot Y)} \) or \( A = Pe^{rt} \)

**Annual Percentage Yield**
6) \( \Delta PY = \left( \frac{\text{year end balance} - \text{starting balance}}{\text{starting balance}} \right) \times 100\% \)

7) \( \Delta PY = \left( 1 + \frac{\text{APR}}{n} \right)^{n} - 1 \)  
   *(= (1 + APR \div n)ⁿ - 1) - Calculator*

**Savings Plans**
8) \( A = \text{PMT} \times \left[ \frac{\left( 1 + \frac{\text{APR}}{n} \right)^{nY} - 1}{\frac{\text{APR}}{n}} \right] \)

   - PMT \(\left((1 + \text{APR} \div n)^{nY} - 1)\div(\text{APR} \div n)\right)\)

9) \( PMT = A \times \left[ \frac{\frac{\text{APR}}{n}}{\left( 1 + \frac{\text{APR}}{n} \right)^{nY} - 1} \right] \)

   - A(\text{APR} \div n)\div\((1 + (\text{APR} \div n)^{nY} - 1)\)

**Loan Payment Formula**
10) \( PMT = P \times \left[ \frac{\frac{\text{APR}}{n}}{1 - \left( 1 + \frac{\text{APR}}{n} \right)^{-nY}} \right] \)

   - P(\text{
Transcribed Image Text:**Formulas – CH. 4-1332** **Simple Interest** 1) \( I = Prt \) 2) \( A = P + Prt \) 3) \( A = P(1 + rt) \) **Compound Interest** - Formula for interest paid \( n \) times per year: 4) \( A = P \left( 1 + \frac{\text{APR}}{n} \right)^{nY} \) 5) Continuous compounding: \( A = P \cdot e^{(\text{APR} \cdot Y)} \) or \( A = Pe^{rt} \) **Annual Percentage Yield** 6) \( \Delta PY = \left( \frac{\text{year end balance} - \text{starting balance}}{\text{starting balance}} \right) \times 100\% \) 7) \( \Delta PY = \left( 1 + \frac{\text{APR}}{n} \right)^{n} - 1 \) *(= (1 + APR \div n)ⁿ - 1) - Calculator* **Savings Plans** 8) \( A = \text{PMT} \times \left[ \frac{\left( 1 + \frac{\text{APR}}{n} \right)^{nY} - 1}{\frac{\text{APR}}{n}} \right] \) - PMT \(\left((1 + \text{APR} \div n)^{nY} - 1)\div(\text{APR} \div n)\right)\) 9) \( PMT = A \times \left[ \frac{\frac{\text{APR}}{n}}{\left( 1 + \frac{\text{APR}}{n} \right)^{nY} - 1} \right] \) - A(\text{APR} \div n)\div\((1 + (\text{APR} \div n)^{nY} - 1)\) **Loan Payment Formula** 10) \( PMT = P \times \left[ \frac{\frac{\text{APR}}{n}}{1 - \left( 1 + \frac{\text{APR}}{n} \right)^{-nY}} \right] \) - P(\text{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,