find the indefinite integral using the substitution x = 4 sin 0. 5. J(16 – x²}9/2 dx dx 7. V16 – x² xp. 8. 16 – x² xp

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

I'm working on #8 right now, help!

**Using Trigonometric Substitution**

In Exercises 5–8, find the indefinite integral using the substitution \( x = 4 \sin \theta \).

5. \(\int \frac{1}{(16 - x^2)^{3/2}} \, dx\)

6. \(\int \frac{4}{x^2 \sqrt{16 - x^2}} \, dx\)

7. \(\int \frac{\sqrt{16 - x^2}}{x} \, dx\)

8. \(\int \frac{x^3}{\sqrt{16 - x^2}} \, dx\)
Transcribed Image Text:**Using Trigonometric Substitution** In Exercises 5–8, find the indefinite integral using the substitution \( x = 4 \sin \theta \). 5. \(\int \frac{1}{(16 - x^2)^{3/2}} \, dx\) 6. \(\int \frac{4}{x^2 \sqrt{16 - x^2}} \, dx\) 7. \(\int \frac{\sqrt{16 - x^2}}{x} \, dx\) 8. \(\int \frac{x^3}{\sqrt{16 - x^2}} \, dx\)
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,