Find the impulse acting on a 5 kg object moving with initial velocity 30 m/s, if the impulse causes the kinetic energy to double.

icon
Related questions
Question
13.) see photo for details, please provide full body diagram with solution
**Problem Statement:**

Find the impulse acting on a 5 kg object moving with an initial velocity of 30 m/s, if the impulse causes the kinetic energy to double.

---

**Solution Explanation:**

1. **Initial Kinetic Energy (KE₁):**
   \[
   KE₁ = \frac{1}{2}mv^2 = \frac{1}{2} \times 5 \, \text{kg} \times (30 \, \text{m/s})^2 = 2250 \, \text{J}
   \]

2. **Final Kinetic Energy (KE₂):**
   Since the kinetic energy doubles, \( KE₂ = 2 \times KE₁ = 4500 \, \text{J} \).

3. **Final Velocity (v₂):**
   \[
   KE₂ = \frac{1}{2}mv_2^2 \Rightarrow 4500 \, \text{J} = \frac{1}{2} \times 5 \, \text{kg} \times v_2^2
   \]
   Solving for \( v_2 \):
   \[
   4500 = 2.5 \times v_2^2 \Rightarrow v_2^2 = 1800 \Rightarrow v_2 = \sqrt{1800} \approx 42.43 \, \text{m/s}
   \]

4. **Impulse (J):**
   \[
   J = \Delta p = m(v_2 - v_1) = 5 \times (42.43 - 30) = 5 \times 12.43 = 62.15 \, \text{Ns}
   \]

The impulse required to double the kinetic energy of the object is \( 62.15 \, \text{Ns} \).
Transcribed Image Text:**Problem Statement:** Find the impulse acting on a 5 kg object moving with an initial velocity of 30 m/s, if the impulse causes the kinetic energy to double. --- **Solution Explanation:** 1. **Initial Kinetic Energy (KE₁):** \[ KE₁ = \frac{1}{2}mv^2 = \frac{1}{2} \times 5 \, \text{kg} \times (30 \, \text{m/s})^2 = 2250 \, \text{J} \] 2. **Final Kinetic Energy (KE₂):** Since the kinetic energy doubles, \( KE₂ = 2 \times KE₁ = 4500 \, \text{J} \). 3. **Final Velocity (v₂):** \[ KE₂ = \frac{1}{2}mv_2^2 \Rightarrow 4500 \, \text{J} = \frac{1}{2} \times 5 \, \text{kg} \times v_2^2 \] Solving for \( v_2 \): \[ 4500 = 2.5 \times v_2^2 \Rightarrow v_2^2 = 1800 \Rightarrow v_2 = \sqrt{1800} \approx 42.43 \, \text{m/s} \] 4. **Impulse (J):** \[ J = \Delta p = m(v_2 - v_1) = 5 \times (42.43 - 30) = 5 \times 12.43 = 62.15 \, \text{Ns} \] The impulse required to double the kinetic energy of the object is \( 62.15 \, \text{Ns} \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions