Find the gradient vector field (F(x, y, z)) of f(x, y, z) = y cos (5²) F(x, y, z) =
Find the gradient vector field (F(x, y, z)) of f(x, y, z) = y cos (5²) F(x, y, z) =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
6.1.9
![**Gradient Vector Field Calculation**
The task is to find the gradient vector field, denoted as \(\vec{F}(x, y, z)\), for the function \(f(x, y, z) = y \cos\left(\frac{5z}{x}\right)\).
To express the gradient vector field, it is written as:
\[
\vec{F}(x, y, z) = \left\langle \boxed{\phantom{a}}, \boxed{\phantom{a}}, \boxed{\phantom{a}} \right\rangle
\]
### Explanation:
The gradient vector field represents the vector of the partial derivatives of the function \(f(x, y, z)\) with respect to the variables \(x\), \(y\), and \(z\). In this case, it involves calculating:
1. The partial derivative of \(f(x, y, z)\) with respect to \(x\),
2. The partial derivative of \(f(x, y, z)\) with respect to \(y\),
3. The partial derivative of \(f(x, y, z)\) with respect to \(z\).
Each of these derivatives will populate the respective components of the gradient vector \(\vec{F}(x, y, z)\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6b463452-b960-4b00-bce0-3a69d9f467e2%2Fa3a7be08-3b2a-4392-ae06-b9daaa4f8e0c%2Fu7ryya_processed.png&w=3840&q=75)
Transcribed Image Text:**Gradient Vector Field Calculation**
The task is to find the gradient vector field, denoted as \(\vec{F}(x, y, z)\), for the function \(f(x, y, z) = y \cos\left(\frac{5z}{x}\right)\).
To express the gradient vector field, it is written as:
\[
\vec{F}(x, y, z) = \left\langle \boxed{\phantom{a}}, \boxed{\phantom{a}}, \boxed{\phantom{a}} \right\rangle
\]
### Explanation:
The gradient vector field represents the vector of the partial derivatives of the function \(f(x, y, z)\) with respect to the variables \(x\), \(y\), and \(z\). In this case, it involves calculating:
1. The partial derivative of \(f(x, y, z)\) with respect to \(x\),
2. The partial derivative of \(f(x, y, z)\) with respect to \(y\),
3. The partial derivative of \(f(x, y, z)\) with respect to \(z\).
Each of these derivatives will populate the respective components of the gradient vector \(\vec{F}(x, y, z)\).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)