Find the gradient vector field (F(x, y, z)) of ƒ(x, y, z) = tan(x + 5y + z) . F(x, y, z) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

3.8

**Problem Statement:**

Find the gradient vector field \(\vec{F}(x, y, z)\) of \(f(x, y, z) = \tan(x + 5y + z)\).

**Solution:**

\[
\vec{F}(x, y, z) = \left \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right \rangle
\]

- The empty boxes should be filled by calculating the partial derivatives of the function \( f(x, y, z) = \tan(x + 5y + z) \):

  - \(\frac{\partial f}{\partial x} = \sec^2(x + 5y + z)\)
  - \(\frac{\partial f}{\partial y} = 5 \sec^2(x + 5y + z)\)
  - \(\frac{\partial f}{\partial z} = \sec^2(x + 5y + z)\)

Thus, the gradient vector field will be:

\[
\vec{F}(x, y, z) = \left \langle \sec^2(x + 5y + z), 5 \sec^2(x + 5y + z), \sec^2(x + 5y + z) \right \rangle
\]
Transcribed Image Text:**Problem Statement:** Find the gradient vector field \(\vec{F}(x, y, z)\) of \(f(x, y, z) = \tan(x + 5y + z)\). **Solution:** \[ \vec{F}(x, y, z) = \left \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right \rangle \] - The empty boxes should be filled by calculating the partial derivatives of the function \( f(x, y, z) = \tan(x + 5y + z) \): - \(\frac{\partial f}{\partial x} = \sec^2(x + 5y + z)\) - \(\frac{\partial f}{\partial y} = 5 \sec^2(x + 5y + z)\) - \(\frac{\partial f}{\partial z} = \sec^2(x + 5y + z)\) Thus, the gradient vector field will be: \[ \vec{F}(x, y, z) = \left \langle \sec^2(x + 5y + z), 5 \sec^2(x + 5y + z), \sec^2(x + 5y + z) \right \rangle \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,