Find the general solution of y " - 7y " + 16y' – 12y =0 given that r = 3 is a root of the characteristic equation.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct!

**Find the General Solution**

Given the differential equation:

\[ y''' - 7y'' + 16y' - 12y = 0 \]

with the root \( r_1 = 3 \) of the characteristic equation, determine the general solution. 

**Options:**

a) \( y = C_1 e^{2x} + C_2 e^{-2x} + C_3 e^{3x} \)

b) \( y = C_1 e^{-2x} + C_2 x e^{-2x} + C_3 e^{-3x} \)

c) \( y = C_1 e^{2x} + C_2 x e^{2x} + C_3 e^{-3x} \)

d) \( y = C_1 e^{2x} + C_2 x e^{2x} + C_3 e^{3x} \)

e) \( y = C_1 e^{2x} + C_2 e^{3x} + C_3 x e^{3x} \)

f) None of the above.

**Notes:**

- \( C_1, C_2, \) and \( C_3 \) are constants.
- Evaluate the characteristic equation and compute possible solutions based on given roots.
Transcribed Image Text:**Find the General Solution** Given the differential equation: \[ y''' - 7y'' + 16y' - 12y = 0 \] with the root \( r_1 = 3 \) of the characteristic equation, determine the general solution. **Options:** a) \( y = C_1 e^{2x} + C_2 e^{-2x} + C_3 e^{3x} \) b) \( y = C_1 e^{-2x} + C_2 x e^{-2x} + C_3 e^{-3x} \) c) \( y = C_1 e^{2x} + C_2 x e^{2x} + C_3 e^{-3x} \) d) \( y = C_1 e^{2x} + C_2 x e^{2x} + C_3 e^{3x} \) e) \( y = C_1 e^{2x} + C_2 e^{3x} + C_3 x e^{3x} \) f) None of the above. **Notes:** - \( C_1, C_2, \) and \( C_3 \) are constants. - Evaluate the characteristic equation and compute possible solutions based on given roots.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,