Find the Fourier series for the given function. f(x) 9 200 f(x) ) = ²/²2 - ²2/2 2² 1 2m ² - 1 ² (2m - 1)лx L (m1)лx f(x) = 9 --> 100 9 -sin πm=1m - 1 L 9 (2m 1)лx f(x): - 20⁰ 9 · Σ πm=12m-1 -COS 2 L 9 200 9 ° f(x) = 2 + ²2₁ 22² sin((2m = 1) πm=12m - 1 L 9 2⁰0 9 (2m 1)лx f(x) (€ 2 πm=12m - 1 L = + - Σ - -sin -COS = f9, -L≤ x < 0, 0, 0 < x < L; f(x + 2L) = f(x)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the Fourier series for the given function.
f(x) =
9 2⁰⁰ 9
2 πm=12m
-
f(x) = 9 - - Σ
100 9
Im=1M - 1
f(x) =
20⁰ 9
Σ
πm=12m - 1
f(x): =
-
200 9
Σ
πm=12m
2
9
9
°ƒ(x) = ²/1 + ² £;
Σ
2
πm=12m -
9|N9|N
2
-sin
1
-sin
f(x) = {%
(2m 1)лx
L
(m1)лx
L
(2m — 1)лx)
L
(2m — 1)лx
-
L
(2m − 1)лx)
L
9, L≤ x < 0,
0 ≤ x < L;
¡cos((2m.
-sin
1
-7cos (12m-
-COS
1
f(x + 2L) = f(x)
Transcribed Image Text:Find the Fourier series for the given function. f(x) = 9 2⁰⁰ 9 2 πm=12m - f(x) = 9 - - Σ 100 9 Im=1M - 1 f(x) = 20⁰ 9 Σ πm=12m - 1 f(x): = - 200 9 Σ πm=12m 2 9 9 °ƒ(x) = ²/1 + ² £; Σ 2 πm=12m - 9|N9|N 2 -sin 1 -sin f(x) = {% (2m 1)лx L (m1)лx L (2m — 1)лx) L (2m — 1)лx - L (2m − 1)лx) L 9, L≤ x < 0, 0 ≤ x < L; ¡cos((2m. -sin 1 -7cos (12m- -COS 1 f(x + 2L) = f(x)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,