Find the following using the table below. x f(x) g(x) g'(x) 14 74 23 3 1 2 4 3 4 3 h' (2) if h(x) = 3 4 2 1 2 دان 2 3 1 h' (2) if h(x) = f(x) · g(x) f(x) g(x)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
## Calculating Derivatives Using a Table

To solve the given problems, we use the following table of functions and their derivatives:

| \( x \) | \( 1 \) | \( 2 \) | \( 3 \) | \( 4 \) |
|---------|---------|---------|---------|---------|
| \( f(x) \) | \( 4 \) | \( 3 \) | \( 1 \) | \( 2 \) |
| \( f'(x) \) | \( 2 \) | \( 4 \) | \( 3 \) | \( 1 \) |
| \( g(x) \) | \( 1 \) | \( 4 \) | \( 3 \) | \( 2 \) |
| \( g'(x) \) | \( 4 \) | \( 2 \) | \( 3 \) | \( 1 \) |

### Problems

1. **Find \( h'(2) \) if \( h(x) = f(x) \cdot g(x) \)**

   To find \( h'(x) \) when \( h(x) = f(x) \cdot g(x) \), use the product rule:
   \[
   h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)
   \]

   Substitute \( x = 2 \):
   \[
   h'(2) = f'(2) \cdot g(2) + f(2) \cdot g'(2)
   \]
   Using the table values:
   \[
   f'(2) = 4, \quad g(2) = 4, \quad f(2) = 3, \quad g'(2) = 2
   \]
   Hence:
   \[
   h'(2) = (4 \cdot 4) + (3 \cdot 2) = 16 + 6 = 22
   \]

2. **Find \( h'(2) \) if \( h(x) = \frac{f(x)}{g(x)} \)**

   To find \( h'(x) \) when \( h(x) = \frac{f(x)}{g(x)} \), use the quotient rule:
   \[
   h'(
Transcribed Image Text:## Calculating Derivatives Using a Table To solve the given problems, we use the following table of functions and their derivatives: | \( x \) | \( 1 \) | \( 2 \) | \( 3 \) | \( 4 \) | |---------|---------|---------|---------|---------| | \( f(x) \) | \( 4 \) | \( 3 \) | \( 1 \) | \( 2 \) | | \( f'(x) \) | \( 2 \) | \( 4 \) | \( 3 \) | \( 1 \) | | \( g(x) \) | \( 1 \) | \( 4 \) | \( 3 \) | \( 2 \) | | \( g'(x) \) | \( 4 \) | \( 2 \) | \( 3 \) | \( 1 \) | ### Problems 1. **Find \( h'(2) \) if \( h(x) = f(x) \cdot g(x) \)** To find \( h'(x) \) when \( h(x) = f(x) \cdot g(x) \), use the product rule: \[ h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \] Substitute \( x = 2 \): \[ h'(2) = f'(2) \cdot g(2) + f(2) \cdot g'(2) \] Using the table values: \[ f'(2) = 4, \quad g(2) = 4, \quad f(2) = 3, \quad g'(2) = 2 \] Hence: \[ h'(2) = (4 \cdot 4) + (3 \cdot 2) = 16 + 6 = 22 \] 2. **Find \( h'(2) \) if \( h(x) = \frac{f(x)}{g(x)} \)** To find \( h'(x) \) when \( h(x) = \frac{f(x)}{g(x)} \), use the quotient rule: \[ h'(
Expert Solution
Step 1: Given

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning