Find the exact values of cose, csc, and tan 0. cos csc0 = 0 tan 0 0 8 X 0/6 S

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
I’m stuck bc when I draw the triangle, how do I know where theta is? The angle opposite the hypotenuse is the right Angle so I know it can’t be the angle close to the origin. I can’t start the problem w/o firsts figuring that out. Please help. That leaves 2 other possible angles. W/o knowing the location of theta, how do I label opposite and adjacent?
**Trigonometric Values from a Point on the Terminal Side of an Angle**

Given the point \( (3, -\sqrt{7}) \) on the terminal side of angle \(\theta\), find the exact values of \(\cos \theta\), \(\csc \theta\), and \(\tan \theta\).

**Steps:**

1. **Calculate the hypotenuse (r)**:
   - Use the Pythagorean theorem: \( r = \sqrt{x^2 + y^2} \).
   - Here, \( x = 3 \) and \( y = -\sqrt{7} \).
   - \( r = \sqrt{3^2 + (-\sqrt{7})^2} = \sqrt{9 + 7} = \sqrt{16} = 4 \).

2. **Find \(\cos \theta\)**:
   - \(\cos \theta = \frac{x}{r} = \frac{3}{4}\).

3. **Find \(\csc \theta\)**:
   - \(\csc \theta = \frac{r}{y} = \frac{4}{-\sqrt{7}} = -\frac{4}{\sqrt{7}}\).
   - Rationalize the denominator: \(-\frac{4\sqrt{7}}{7}\).

4. **Find \(\tan \theta\)**:
   - \(\tan \theta = \frac{y}{x} = \frac{-\sqrt{7}}{3}\).

**Conclusion:**

- \(\cos \theta = \frac{3}{4}\)
- \(\csc \theta = -\frac{4\sqrt{7}}{7}\)
- \(\tan \theta = \frac{-\sqrt{7}}{3}\)
Transcribed Image Text:**Trigonometric Values from a Point on the Terminal Side of an Angle** Given the point \( (3, -\sqrt{7}) \) on the terminal side of angle \(\theta\), find the exact values of \(\cos \theta\), \(\csc \theta\), and \(\tan \theta\). **Steps:** 1. **Calculate the hypotenuse (r)**: - Use the Pythagorean theorem: \( r = \sqrt{x^2 + y^2} \). - Here, \( x = 3 \) and \( y = -\sqrt{7} \). - \( r = \sqrt{3^2 + (-\sqrt{7})^2} = \sqrt{9 + 7} = \sqrt{16} = 4 \). 2. **Find \(\cos \theta\)**: - \(\cos \theta = \frac{x}{r} = \frac{3}{4}\). 3. **Find \(\csc \theta\)**: - \(\csc \theta = \frac{r}{y} = \frac{4}{-\sqrt{7}} = -\frac{4}{\sqrt{7}}\). - Rationalize the denominator: \(-\frac{4\sqrt{7}}{7}\). 4. **Find \(\tan \theta\)**: - \(\tan \theta = \frac{y}{x} = \frac{-\sqrt{7}}{3}\). **Conclusion:** - \(\cos \theta = \frac{3}{4}\) - \(\csc \theta = -\frac{4\sqrt{7}}{7}\) - \(\tan \theta = \frac{-\sqrt{7}}{3}\)
Expert Solution
Step 1

Given:

Let 3,-7 be a point on the terminal side of θ.

To find : Exact values of cosθ,cscθ and tanθ.

Terminal side is defined as the side which is opposite to right angle in a right-angle triangle.

Pythagoras theorem in a right angle triangle is given as:

a2=b2+c2

Where, a is hypotenuse and b,c are other sides of the right-angle triangle.

Trigonometric ratios define the relation between the sides and angles of a right angle triangle.

There are six trigonometric ratios: sine, cosine, tangent, cosecant, secant and cotangent.

steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning