Find the equation of the line tangent to the cardioid r = 1+ sin(0) at Ô0 =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
![**Question:**
Find the equation of the line tangent to the cardioid \( r = 1 + \sin(\theta) \) at \( \theta = 0 \).
---
**Solution:**
1. **Convert to Cartesian Coordinates:**
The polar coordinates \( r \) and \( \theta \) can be converted to Cartesian coordinates \( (x, y) \) using the formulas:
\[
x = r \cos(\theta)
\]
\[
y = r \sin(\theta)
\]
For the given cardioid \( r = 1 + \sin(\theta) \), we first calculate the coordinates at \( \theta = 0 \).
\[
r = 1 + \sin(0) = 1 + 0 = 1
\]
\[
x (0) = 1 \cos(0) = 1 \cdot 1 = 1
\]
\[
y (0) = 1 \sin(0) = 1 \cdot 0 = 0
\]
Therefore, the point of tangency in Cartesian coordinates is \( (1, 0) \).
2. **Find the Derivative:**
To find the slope of the tangent line, we consider the derivatives of \( x \) and \( y \) with respect to \( \theta \).
\[
x = r \cos(\theta) = \left(1 + \sin(\theta)\right) \cos(\theta)
\]
\[
y = r \sin(\theta) = \left(1 + \sin(\theta)\right) \sin(\theta)
\]
Differentiate \( x \) and \( y \) with respect to \( \theta \):
\[
\frac{dx}{d\theta} = \frac{d}{d\theta} \left( (1 + \sin(\theta)) \cos(\theta) \right)
\]
Apply the product rule:
\[
\frac{dx}{d\theta} = \cos(\theta) \frac{d}{d\theta} (1 + \sin(\theta)) + (1 + \sin(\theta)) \frac{d}{d\theta} \cos(\theta)
\]
\[](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F720535be-d647-4725-8ea5-21875474b49c%2F6922acbc-655e-4e21-83ce-5421333dc999%2Fvmv7n1l_processed.png&w=3840&q=75)
Transcribed Image Text:**Question:**
Find the equation of the line tangent to the cardioid \( r = 1 + \sin(\theta) \) at \( \theta = 0 \).
---
**Solution:**
1. **Convert to Cartesian Coordinates:**
The polar coordinates \( r \) and \( \theta \) can be converted to Cartesian coordinates \( (x, y) \) using the formulas:
\[
x = r \cos(\theta)
\]
\[
y = r \sin(\theta)
\]
For the given cardioid \( r = 1 + \sin(\theta) \), we first calculate the coordinates at \( \theta = 0 \).
\[
r = 1 + \sin(0) = 1 + 0 = 1
\]
\[
x (0) = 1 \cos(0) = 1 \cdot 1 = 1
\]
\[
y (0) = 1 \sin(0) = 1 \cdot 0 = 0
\]
Therefore, the point of tangency in Cartesian coordinates is \( (1, 0) \).
2. **Find the Derivative:**
To find the slope of the tangent line, we consider the derivatives of \( x \) and \( y \) with respect to \( \theta \).
\[
x = r \cos(\theta) = \left(1 + \sin(\theta)\right) \cos(\theta)
\]
\[
y = r \sin(\theta) = \left(1 + \sin(\theta)\right) \sin(\theta)
\]
Differentiate \( x \) and \( y \) with respect to \( \theta \):
\[
\frac{dx}{d\theta} = \frac{d}{d\theta} \left( (1 + \sin(\theta)) \cos(\theta) \right)
\]
Apply the product rule:
\[
\frac{dx}{d\theta} = \cos(\theta) \frac{d}{d\theta} (1 + \sin(\theta)) + (1 + \sin(\theta)) \frac{d}{d\theta} \cos(\theta)
\]
\[
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 14 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)