Find the directions in space where the angular probability density for the l = 2, ml = 0 electron in hydrogen has its maxima and minima

icon
Related questions
Question

Find the directions in space where the angular probability density for the l = 2, ml = 0 electron in hydrogen has its maxima and minima.

This table presents the wave functions of hydrogen atom electron orbitals, categorized by quantum numbers \( n \), \( l \), and \( m_l \). Each row corresponds to a specific combination of these quantum numbers and provides the expressions for the radial, polar, and azimuthal components of the wave functions.

### Table Columns:
- **\( n \):** Principal quantum number
- **\( l \):** Azimuthal quantum number
- **\( m_l \):** Magnetic quantum number
- **\( R(r) \):** Radial wave function
- **\( \Theta(\theta) \):** Polar angle component
- **\( \Phi(\phi) \):** Azimuthal angle component

### Detailed Entries:

#### \( n = 1 \), \( l = 0 \), \( m_l = 0 \)
- **\( R(r) \):** \( \frac{2}{a_0^{3/2}} e^{-r/a_0} \)
- **\( \Theta(\theta) \):** \( \frac{1}{\sqrt{2}} \)
- **\( \Phi(\phi) \):** \( \frac{1}{\sqrt{2\pi}} \)

#### \( n = 2 \), \( l = 0 \), \( m_l = 0 \)
- **\( R(r) \):** \( \frac{1}{(2a_0)^{3/2}} \left( 2 - \frac{r}{a_0} \right) e^{-r/2a_0} \)
- **\( \Theta(\theta) \):** \( \frac{1}{\sqrt{2}} \)
- **\( \Phi(\phi) \):** \( \frac{1}{\sqrt{2\pi}} \)

#### \( n = 2 \), \( l = 1 \), \( m_l = 0 \)
- **\( R(r) \):** \( \frac{1}{\sqrt{3}(2a_0)^{3/2}} \frac{r}{a_0} e^{-r/2a_0} \)
- **\( \Theta(\theta) \):** \( \sqrt{\frac{3}{2}} \cos \theta \)
- **\( \Phi(\phi) \):** \( \frac{
Transcribed Image Text:This table presents the wave functions of hydrogen atom electron orbitals, categorized by quantum numbers \( n \), \( l \), and \( m_l \). Each row corresponds to a specific combination of these quantum numbers and provides the expressions for the radial, polar, and azimuthal components of the wave functions. ### Table Columns: - **\( n \):** Principal quantum number - **\( l \):** Azimuthal quantum number - **\( m_l \):** Magnetic quantum number - **\( R(r) \):** Radial wave function - **\( \Theta(\theta) \):** Polar angle component - **\( \Phi(\phi) \):** Azimuthal angle component ### Detailed Entries: #### \( n = 1 \), \( l = 0 \), \( m_l = 0 \) - **\( R(r) \):** \( \frac{2}{a_0^{3/2}} e^{-r/a_0} \) - **\( \Theta(\theta) \):** \( \frac{1}{\sqrt{2}} \) - **\( \Phi(\phi) \):** \( \frac{1}{\sqrt{2\pi}} \) #### \( n = 2 \), \( l = 0 \), \( m_l = 0 \) - **\( R(r) \):** \( \frac{1}{(2a_0)^{3/2}} \left( 2 - \frac{r}{a_0} \right) e^{-r/2a_0} \) - **\( \Theta(\theta) \):** \( \frac{1}{\sqrt{2}} \) - **\( \Phi(\phi) \):** \( \frac{1}{\sqrt{2\pi}} \) #### \( n = 2 \), \( l = 1 \), \( m_l = 0 \) - **\( R(r) \):** \( \frac{1}{\sqrt{3}(2a_0)^{3/2}} \frac{r}{a_0} e^{-r/2a_0} \) - **\( \Theta(\theta) \):** \( \sqrt{\frac{3}{2}} \cos \theta \) - **\( \Phi(\phi) \):** \( \frac{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions