Find the cumulative density function for the given probability density function. -1.7x k(x) = 1.7 e , for 0

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
### Finding the Cumulative Density Function (CDF)

Given the probability density function (PDF):

\[ k(x) = 1.7 e^{-1.7x}, \quad \text{for } 0 \leq x < \infty \]

We are to find the cumulative density function (CDF) \( K(x) \).

### Probability Density Function (PDF)
The PDF \( k(x) \) is given as:

\[ k(x) = 1.7 e^{-1.7x}, \quad \text{for } 0 \leq x < \infty \]

### Cumulative Density Function (CDF)
The cumulative density function \( K(x) \) is defined as the integral of the PDF from \(-\infty\) to \(x\):

\[ K(x) = \int_{-\infty}^{x} k(t) \, dt \]

Since \( k(x) \) is defined for \( 0 \leq x < \infty \), we compute the integral from 0 to \(x\):

\[ K(x) = \int_{0}^{x} 1.7 e^{-1.7t} \, dt \]

The goal is to find this integral and express it as \( K(x) \).

\[ K(x) = \left[ -e^{-1.7t} \right]_{0}^{x} \]

Evaluating this, we get:

\[ K(x) = -e^{-1.7x} + e^0 \]

\[ K(x) = -e^{-1.7x} + 1 \]

Thus, the cumulative density function is:

\[ K(x) = 1 - e^{-1.7x}, \quad \text{for } 0 \leq x < \infty \]

### Final Result
The cumulative density function \( K(x) \) for the given probability density function is:

\[ K(x) = 1 - e^{-1.7x}, \quad \text{for } 0 \leq x < \infty \]
Transcribed Image Text:### Finding the Cumulative Density Function (CDF) Given the probability density function (PDF): \[ k(x) = 1.7 e^{-1.7x}, \quad \text{for } 0 \leq x < \infty \] We are to find the cumulative density function (CDF) \( K(x) \). ### Probability Density Function (PDF) The PDF \( k(x) \) is given as: \[ k(x) = 1.7 e^{-1.7x}, \quad \text{for } 0 \leq x < \infty \] ### Cumulative Density Function (CDF) The cumulative density function \( K(x) \) is defined as the integral of the PDF from \(-\infty\) to \(x\): \[ K(x) = \int_{-\infty}^{x} k(t) \, dt \] Since \( k(x) \) is defined for \( 0 \leq x < \infty \), we compute the integral from 0 to \(x\): \[ K(x) = \int_{0}^{x} 1.7 e^{-1.7t} \, dt \] The goal is to find this integral and express it as \( K(x) \). \[ K(x) = \left[ -e^{-1.7t} \right]_{0}^{x} \] Evaluating this, we get: \[ K(x) = -e^{-1.7x} + e^0 \] \[ K(x) = -e^{-1.7x} + 1 \] Thus, the cumulative density function is: \[ K(x) = 1 - e^{-1.7x}, \quad \text{for } 0 \leq x < \infty \] ### Final Result The cumulative density function \( K(x) \) for the given probability density function is: \[ K(x) = 1 - e^{-1.7x}, \quad \text{for } 0 \leq x < \infty \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman