Find the coordinate vector (x)g of x relative to the given basis B= b, b2). (Simplify your answer.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Title: Finding the Coordinate Vector Relative to a Given Basis

Objective: Learn how to determine the coordinate vector of a given vector \( x \) relative to a specified basis \( B \).

Problem Statement:
Find the coordinate vector \([x]_B\) of \( x \) relative to the given basis \( B = \{ \mathbf{b_1}, \mathbf{b_2} \} \).

Given:
\[ \mathbf{b_1} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \]
\[ \mathbf{b_2} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \]
\[ x = \begin{bmatrix} 4 \\ -5 \end{bmatrix} \]

Solution:
Determine the coordinate vector \([x]_B\).

\[ [x]_B = \begin{bmatrix} \square \\ \square \end{bmatrix} \]

(Please simplify your answer.)

Explanation:
To find the coordinate vector \([x]_B\) of \( x \) relative to basis \( B \), solve the equation

\[ x = c_1 \mathbf{b_1} + c_2 \mathbf{b_2} \]

for \( c_1 \) and \( c_2 \). Here, \( c_1 \) and \( c_2 \) are the coordinates of \( x \) in the basis \( B \), which will be the components of the coordinate vector \([x]_B\).

In matrix form, this equation is:

\[ \begin{bmatrix} 4 \\ -5 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ -3 \end{bmatrix} \]

By solving the above system for \( c_1 \) and \( c_2 \), we find the components of the coordinate vector \([x]_B\).
Transcribed Image Text:Title: Finding the Coordinate Vector Relative to a Given Basis Objective: Learn how to determine the coordinate vector of a given vector \( x \) relative to a specified basis \( B \). Problem Statement: Find the coordinate vector \([x]_B\) of \( x \) relative to the given basis \( B = \{ \mathbf{b_1}, \mathbf{b_2} \} \). Given: \[ \mathbf{b_1} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \] \[ \mathbf{b_2} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \] \[ x = \begin{bmatrix} 4 \\ -5 \end{bmatrix} \] Solution: Determine the coordinate vector \([x]_B\). \[ [x]_B = \begin{bmatrix} \square \\ \square \end{bmatrix} \] (Please simplify your answer.) Explanation: To find the coordinate vector \([x]_B\) of \( x \) relative to basis \( B \), solve the equation \[ x = c_1 \mathbf{b_1} + c_2 \mathbf{b_2} \] for \( c_1 \) and \( c_2 \). Here, \( c_1 \) and \( c_2 \) are the coordinates of \( x \) in the basis \( B \), which will be the components of the coordinate vector \([x]_B\). In matrix form, this equation is: \[ \begin{bmatrix} 4 \\ -5 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ -3 \end{bmatrix} \] By solving the above system for \( c_1 \) and \( c_2 \), we find the components of the coordinate vector \([x]_B\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,