Find the convolution of the two finite-length sequences: x(n) = 0.5n[u(n) – u(n - 6)] %3D tu(n + 3) – u(n – 4)] h(n) = 2 sin y(n) = 2x(n - 3) - 2x(n + 1)+ 2x(n - 1) - 2x(n - 3) y(n) = 2x(n + 3) - 2x(n + 1) + 2x(n - 1) - 2x(n - 3) O y(n) = 2x(n + 3) - 2x(n + 1) + 2x(n - 1) - 2x(n + 3) y(n) = 2x(n + 3) - 2x(n -1)+ 2x(n - 1) - 2x(n- 3)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the convolution of the two finite-length sequences:
x(n) = 0.5n[u(n) - u(n - 6)]
|
h(n) = 2 sin
[u(n +3)- u(n- 4)]
2
y(n) = 2x(n - 3) - 2x(n + 1) + 2x(n - 1) - 2x(n - 3)
y(n) = 2x(n + 3) - 2x(n +1) + 2x(n - 1) - 2x(n - 3)
y(n) = 2x(n + 3) - 2x(n + 1) + 2x(n - 1) - 2x(n + 3)
y(n) = 2x(n + 3) - 2x(n - 1) + 2x(n - 1) - 2x(n- 3) O
Transcribed Image Text:Find the convolution of the two finite-length sequences: x(n) = 0.5n[u(n) - u(n - 6)] | h(n) = 2 sin [u(n +3)- u(n- 4)] 2 y(n) = 2x(n - 3) - 2x(n + 1) + 2x(n - 1) - 2x(n - 3) y(n) = 2x(n + 3) - 2x(n +1) + 2x(n - 1) - 2x(n - 3) y(n) = 2x(n + 3) - 2x(n + 1) + 2x(n - 1) - 2x(n + 3) y(n) = 2x(n + 3) - 2x(n - 1) + 2x(n - 1) - 2x(n- 3) O
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Power Series
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,