Find the closest point to y in the subspace W spanned by V₁ and V₂ 2 4 -6 2 3 3 2 y = a. O O a O с 37 11 36 11 11 36 11 b. 38 11 36 11 11 36 11 0 38 11 36 11 11 36 11 d. 38 11 36 11 11 37 11

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Finding the Closest Point in a Subspace

Given the problem statement:

Find the closest point to \( y \) in the subspace \( W \) spanned by \( v_1 \) and \( v_2 \).

The vectors and subspace are defined as follows:
\[ y = \begin{bmatrix} 2 \\ -6 \\ 3 \\ 2 \end{bmatrix} , \quad v_1 = \begin{bmatrix} 4 \\ 2 \\ 3 \\ -2 \end{bmatrix} , \quad v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}. \]

You need to choose the correct closest point from the following options:

a.
\[ \begin{bmatrix} \frac{37}{11} \\ -\frac{36}{11} \\ \frac{1}{11} \\ \frac{36}{11} \end{bmatrix} \]

b.
\[ \begin{bmatrix} \frac{38}{11} \\ -\frac{36}{11} \\ \frac{2}{11} \\ \frac{36}{11} \end{bmatrix} \]

c.
\[ \begin{bmatrix} \frac{38}{11} \\ -\frac{36}{11} \\ \frac{1}{11} \\ \frac{36}{11} \end{bmatrix} \]

d.
\[ \begin{bmatrix} \frac{38}{11} \\ -\frac{36}{11} \\ \frac{1}{11} \\ \frac{37}{11} \end{bmatrix} \]

### Answer Choices

- \(\mathbf{a}\)
- \(\mathbf{b}\)
- \(\mathbf{c}\)
- \(\mathbf{d}\)

### Instructions for Students

To find the closest point, you need to understand the concept of projecting vectors onto subspaces. This involves using the Gram-Schmidt process or directly applying the projection formulas for the given subspace.

Reflect on the properties of orthogonal projections and the calculations involved to determine which of the provided vectors is the closest in terms of Euclidean distance to the vector \( y \) in the subspace \( W \).
Transcribed Image Text:## Finding the Closest Point in a Subspace Given the problem statement: Find the closest point to \( y \) in the subspace \( W \) spanned by \( v_1 \) and \( v_2 \). The vectors and subspace are defined as follows: \[ y = \begin{bmatrix} 2 \\ -6 \\ 3 \\ 2 \end{bmatrix} , \quad v_1 = \begin{bmatrix} 4 \\ 2 \\ 3 \\ -2 \end{bmatrix} , \quad v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}. \] You need to choose the correct closest point from the following options: a. \[ \begin{bmatrix} \frac{37}{11} \\ -\frac{36}{11} \\ \frac{1}{11} \\ \frac{36}{11} \end{bmatrix} \] b. \[ \begin{bmatrix} \frac{38}{11} \\ -\frac{36}{11} \\ \frac{2}{11} \\ \frac{36}{11} \end{bmatrix} \] c. \[ \begin{bmatrix} \frac{38}{11} \\ -\frac{36}{11} \\ \frac{1}{11} \\ \frac{36}{11} \end{bmatrix} \] d. \[ \begin{bmatrix} \frac{38}{11} \\ -\frac{36}{11} \\ \frac{1}{11} \\ \frac{37}{11} \end{bmatrix} \] ### Answer Choices - \(\mathbf{a}\) - \(\mathbf{b}\) - \(\mathbf{c}\) - \(\mathbf{d}\) ### Instructions for Students To find the closest point, you need to understand the concept of projecting vectors onto subspaces. This involves using the Gram-Schmidt process or directly applying the projection formulas for the given subspace. Reflect on the properties of orthogonal projections and the calculations involved to determine which of the provided vectors is the closest in terms of Euclidean distance to the vector \( y \) in the subspace \( W \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,