Determine whether the following sets are subspaces of R³. Realize number 4 as the span of a collection of vectors. Justify your answers. 1. W₁ = = 2. W₂ = = 3. W3 = = a1 {}] a₂ € R³: a₁ = 3a2 and a3 = -A₂ -93) a1 a2 a3 a1 E a2 a3 € R³: : a₁ = a3 + 2 +9₁=0} E R³2a1 - 7a2 + a3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Subspaces of \( \mathbb{R}^3 \)

Determine whether the following sets are subspaces of \( \mathbb{R}^3 \). Realize number 4 as the span of a collection of vectors. Justify your answers.

1. \( W_1 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2 \right\} \)

2. \( W_2 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 = a_3 + 2 \right\} \)

3. \( W_3 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : 2a_1 - 7a_2 + a_3 = 0 \right\} \)

4. \( W_4 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 - 4a_2 - a_3 = 0 \right\} \)

5. \( W_5 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 + 2a_2 - 3a_3 = 1 \right\} \)

6. \( W_6 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : 5a_1^2 - 3a_2^2 + 6a_3^2 = 0 \right\} \)
Transcribed Image Text:### Subspaces of \( \mathbb{R}^3 \) Determine whether the following sets are subspaces of \( \mathbb{R}^3 \). Realize number 4 as the span of a collection of vectors. Justify your answers. 1. \( W_1 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2 \right\} \) 2. \( W_2 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 = a_3 + 2 \right\} \) 3. \( W_3 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : 2a_1 - 7a_2 + a_3 = 0 \right\} \) 4. \( W_4 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 - 4a_2 - a_3 = 0 \right\} \) 5. \( W_5 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 + 2a_2 - 3a_3 = 1 \right\} \) 6. \( W_6 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : 5a_1^2 - 3a_2^2 + 6a_3^2 = 0 \right\} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,