Determine whether the following sets are subspaces of R³. Realize number 4 as the span of a collection of vectors. Justify your answers. 1. W₁ = = 2. W₂ = = 3. W3 = = a1 {}] a₂ € R³: a₁ = 3a2 and a3 = -A₂ -93) a1 a2 a3 a1 E a2 a3 € R³: : a₁ = a3 + 2 +9₁=0} E R³2a1 - 7a2 + a3
Determine whether the following sets are subspaces of R³. Realize number 4 as the span of a collection of vectors. Justify your answers. 1. W₁ = = 2. W₂ = = 3. W3 = = a1 {}] a₂ € R³: a₁ = 3a2 and a3 = -A₂ -93) a1 a2 a3 a1 E a2 a3 € R³: : a₁ = a3 + 2 +9₁=0} E R³2a1 - 7a2 + a3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Subspaces of \( \mathbb{R}^3 \)
Determine whether the following sets are subspaces of \( \mathbb{R}^3 \). Realize number 4 as the span of a collection of vectors. Justify your answers.
1. \( W_1 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2 \right\} \)
2. \( W_2 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 = a_3 + 2 \right\} \)
3. \( W_3 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : 2a_1 - 7a_2 + a_3 = 0 \right\} \)
4. \( W_4 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 - 4a_2 - a_3 = 0 \right\} \)
5. \( W_5 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 + 2a_2 - 3a_3 = 1 \right\} \)
6. \( W_6 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : 5a_1^2 - 3a_2^2 + 6a_3^2 = 0 \right\} \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7538180c-5348-4d54-a5c1-c840ed6fc5b5%2F6febe297-26a9-4ae8-8c42-bad5454fda01%2F47bz13_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Subspaces of \( \mathbb{R}^3 \)
Determine whether the following sets are subspaces of \( \mathbb{R}^3 \). Realize number 4 as the span of a collection of vectors. Justify your answers.
1. \( W_1 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2 \right\} \)
2. \( W_2 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 = a_3 + 2 \right\} \)
3. \( W_3 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : 2a_1 - 7a_2 + a_3 = 0 \right\} \)
4. \( W_4 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 - 4a_2 - a_3 = 0 \right\} \)
5. \( W_5 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : a_1 + 2a_2 - 3a_3 = 1 \right\} \)
6. \( W_6 = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathbb{R}^3 : 5a_1^2 - 3a_2^2 + 6a_3^2 = 0 \right\} \)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)