Kinematics
A machine is a device that accepts energy in some available form and utilizes it to do a type of work. Energy, work, or power has to be transferred from one mechanical part to another to run a machine. While the transfer of energy between two machine parts, those two parts experience a relative motion with each other. Studying such relative motions is termed kinematics.
Kinetic Energy and Work-Energy Theorem
In physics, work is the product of the net force in direction of the displacement and the magnitude of this displacement or it can also be defined as the energy transfer of an object when it is moved for a distance due to the forces acting on it in the direction of displacement and perpendicular to the displacement which is called the normal force. Energy is the capacity of any object doing work. The SI unit of work is joule and energy is Joule. This principle follows the second law of Newton's law of motion where the net force causes the acceleration of an object. The force of gravity which is downward force and the normal force acting on an object which is perpendicular to the object are equal in magnitude but opposite to the direction, so while determining the net force, these two components cancel out. The net force is the horizontal component of the force and in our explanation, we consider everything as frictionless surface since friction should also be calculated while called the work-energy component of the object. The two most basics of energy classification are potential energy and kinetic energy. There are various kinds of kinetic energy like chemical, mechanical, thermal, nuclear, electrical, radiant energy, and so on. The work is done when there is a change in energy and it mainly depends on the application of force and movement of the object. Let us say how much work is needed to lift a 5kg ball 5m high. Work is mathematically represented as Force ×Displacement. So it will be 5kg times the gravitational constant on earth and the distance moved by the object. Wnet=Fnet times Displacement.
I keep getting the same wrong answer for this what am I doing wrong?
![You are designing a runaway truck ramp for Interstate 70 near Dillon. The setup is shown below.
spring
gravel
The hill is covered in gravel so that the truck's wheels will slide up the hill instead of rolling up the hill. The coefficient of kinetic friction
between the tires and the gravel is uk. This design has a spring at the top of the ramp that will help to stop the trucks. This spring is
located at height h. The spring will compress until the truck stops, and then a latch will keep the spring from decompressing (stretching
back out). The spring can compress a maximum distance x because of the latching mechanism. Your job is to determine how strong the
spring must be. In other words, you need to find the spring constant so that a truck of mass mt, moving at an initial speed of vo, will be
stopped. For this problem, it is easiest to define the system such that it contains everything: Earth, hill, truck, gravel, spring, etc. In all of
the following questions, the initial configuration is the truck moving with a speed of vo on the level ground, and the final configuration is
the truck stopped on the hill with the spring compressed by an amount x. The truck is still in contact with the spring. *Solve all of the
questions algebraically first. Then use the following values to get a number for the desired answer.*](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F919fc4f8-bc37-4123-8b2a-9ca8cd02385f%2Fd9c287c9-44d5-429a-8de1-e542d0eea8f2%2Fccb9g7w_processed.png&w=3840&q=75)
![mt = 19000 kg
vo = 64 m/s
x = 3 meters
h = 47 meters
Hk = 0.62
0 = 33.1 degrees
L = 10.8 meters
W
Ug
Et
Find the change in thermal energy of the system. *Note: The region under the spring also has gravel under it.*
ΔΕnerm
3659327.409 N*i
>> <](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F919fc4f8-bc37-4123-8b2a-9ca8cd02385f%2Fd9c287c9-44d5-429a-8de1-e542d0eea8f2%2Fi869el_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)