Find the area of triangle with vertices Q C5, 1, 32, R (2,4,6), SC1,-1,9).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Can anyone please help me with this problem? I am stuck! Please help me!
**Finding the Area of a Triangle Given Vertices**

To find the area of a triangle with vertices at the points \( Q(5, 1, 3) \), \( R(2, 4, 6) \), and \( S(1, -1, 9) \), you can use the formula for the area of a triangle in 3D space:

1. **Define the vectors**: Compute vectors \( \overrightarrow{QR} \) and \( \overrightarrow{QS} \).
   - \( \overrightarrow{QR} = R - Q = (2-5, 4-1, 6-3) = (-3, 3, 3) \)
   - \( \overrightarrow{QS} = S - Q = (1-5, -1-1, 9-3) = (-4, -2, 6) \)

2. **Compute the cross product** \( \overrightarrow{QR} \times \overrightarrow{QS} \):
   - \(\overrightarrow{QR} \times \overrightarrow{QS} = \left| \begin{matrix} 
   \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 
   -3 & 3 & 3 \\ 
   -4 & -2 & 6 
   \end{matrix} \right|\)
   - Calculate the determinant:
     - \( = \mathbf{i}(3 \cdot 6 - 3 \cdot (-2)) - \mathbf{j}(-3 \cdot 6 - 3 \cdot (-4)) + \mathbf{k}(-3 \cdot (-2) - 3 \cdot (-4)) \)
     - \( = \mathbf{i}(18 + 6) - \mathbf{j}(-18 + 12) + \mathbf{k}(6 + 12) \)
     - \( = \mathbf{i}(24) - \mathbf{j}(-6) + \mathbf{k}(18) \)
     - \( = (24, 6, 18) \)

3. **Magnitude of the cross product**:
   - \( \text{Magnitude} = \sqrt{(24)^2 + (6)^2 + (18)^2} = \sqrt{576 + 36 + 324} = \sqrt{
Transcribed Image Text:**Finding the Area of a Triangle Given Vertices** To find the area of a triangle with vertices at the points \( Q(5, 1, 3) \), \( R(2, 4, 6) \), and \( S(1, -1, 9) \), you can use the formula for the area of a triangle in 3D space: 1. **Define the vectors**: Compute vectors \( \overrightarrow{QR} \) and \( \overrightarrow{QS} \). - \( \overrightarrow{QR} = R - Q = (2-5, 4-1, 6-3) = (-3, 3, 3) \) - \( \overrightarrow{QS} = S - Q = (1-5, -1-1, 9-3) = (-4, -2, 6) \) 2. **Compute the cross product** \( \overrightarrow{QR} \times \overrightarrow{QS} \): - \(\overrightarrow{QR} \times \overrightarrow{QS} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 3 & 3 \\ -4 & -2 & 6 \end{matrix} \right|\) - Calculate the determinant: - \( = \mathbf{i}(3 \cdot 6 - 3 \cdot (-2)) - \mathbf{j}(-3 \cdot 6 - 3 \cdot (-4)) + \mathbf{k}(-3 \cdot (-2) - 3 \cdot (-4)) \) - \( = \mathbf{i}(18 + 6) - \mathbf{j}(-18 + 12) + \mathbf{k}(6 + 12) \) - \( = \mathbf{i}(24) - \mathbf{j}(-6) + \mathbf{k}(18) \) - \( = (24, 6, 18) \) 3. **Magnitude of the cross product**: - \( \text{Magnitude} = \sqrt{(24)^2 + (6)^2 + (18)^2} = \sqrt{576 + 36 + 324} = \sqrt{
# Find the Area of a Triangle with Given Vertices

## Problem Statement

Calculate the area of a triangle with the following vertices:

- Q(5, 13)
- R(2, 4)
- S(11, 19)

## Solution Approach

To find the area of a triangle given the coordinates of its vertices, we use the formula:

\[ \text{Area} = \frac{1}{2} \left| x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) \right| \]

where (x₁, y₁), (x₂, y₂), and (x₃, y₃) are the coordinates of the vertices.

## Summary

- Assign Q(5, 13) as (x₁, y₁), R(2, 4) as (x₂, y₂), and S(11, 19) as (x₃, y₃).
- Substitute these coordinates into the formula and solve for the area.

This method provides a straightforward means of calculating the area using determinant-like computations.
Transcribed Image Text:# Find the Area of a Triangle with Given Vertices ## Problem Statement Calculate the area of a triangle with the following vertices: - Q(5, 13) - R(2, 4) - S(11, 19) ## Solution Approach To find the area of a triangle given the coordinates of its vertices, we use the formula: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) \right| \] where (x₁, y₁), (x₂, y₂), and (x₃, y₃) are the coordinates of the vertices. ## Summary - Assign Q(5, 13) as (x₁, y₁), R(2, 4) as (x₂, y₂), and S(11, 19) as (x₃, y₃). - Substitute these coordinates into the formula and solve for the area. This method provides a straightforward means of calculating the area using determinant-like computations.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning