Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
![**Problem Statement:**
Find the area of a triangle \(PQR\), where \(P = (6, -3, -5)\), \(Q = (0, 4, -3)\), and \(R = (-6, -1, -5)\).
**Explanation:**
To find the area of the triangle \(PQR\), where the vertices are given in three dimensions, we use the vector cross product method. The formula for the area of a triangle with vertices \(P\), \(Q\), and \(R\) is given by:
\[ \text{Area} = \frac{1}{2} \| \overrightarrow{PQ} \times \overrightarrow{PR} \| \]
1. **Calculating Vectors:**
- Vector \(\overrightarrow{PQ}\):
\[ \overrightarrow{PQ} = Q - P = (0 - 6, 4 - (-3), -3 - (-5)) = (-6, 7, 2) \]
- Vector \(\overrightarrow{PR}\):
\[ \overrightarrow{PR} = R - P = (-6 - 6, -1 - (-3), -5 - (-5)) = (-12, 2, 0) \]
2. **Cross Product of Vectors \(\overrightarrow{PQ}\) and \(\overrightarrow{PR}\):**
- Using the determinant method to find the cross product \(\overrightarrow{PQ} \times \overrightarrow{PR}\), we get:
\[
\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-6 & 7 & 2 \\
-12 & 2 & 0
\end{vmatrix}
\]
- Expanding the determinant:
\[
= \mathbf{i}(7 \cdot 0 - 2 \cdot 2) - \mathbf{j}(-6 \cdot 0 - 2 \cdot -12) + \mathbf{k}(-6 \cdot 2 - 7 \cdot -12)
\]
\[
= \mathbf{i}(0 - 4) - \mathbf{j}(0 +](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F55d3466e-6a31-4aff-972b-e33941523058%2Fa549c851-8370-4f91-a028-49329a46fe4f%2Fbziy8ld_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the area of a triangle \(PQR\), where \(P = (6, -3, -5)\), \(Q = (0, 4, -3)\), and \(R = (-6, -1, -5)\).
**Explanation:**
To find the area of the triangle \(PQR\), where the vertices are given in three dimensions, we use the vector cross product method. The formula for the area of a triangle with vertices \(P\), \(Q\), and \(R\) is given by:
\[ \text{Area} = \frac{1}{2} \| \overrightarrow{PQ} \times \overrightarrow{PR} \| \]
1. **Calculating Vectors:**
- Vector \(\overrightarrow{PQ}\):
\[ \overrightarrow{PQ} = Q - P = (0 - 6, 4 - (-3), -3 - (-5)) = (-6, 7, 2) \]
- Vector \(\overrightarrow{PR}\):
\[ \overrightarrow{PR} = R - P = (-6 - 6, -1 - (-3), -5 - (-5)) = (-12, 2, 0) \]
2. **Cross Product of Vectors \(\overrightarrow{PQ}\) and \(\overrightarrow{PR}\):**
- Using the determinant method to find the cross product \(\overrightarrow{PQ} \times \overrightarrow{PR}\), we get:
\[
\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-6 & 7 & 2 \\
-12 & 2 & 0
\end{vmatrix}
\]
- Expanding the determinant:
\[
= \mathbf{i}(7 \cdot 0 - 2 \cdot 2) - \mathbf{j}(-6 \cdot 0 - 2 \cdot -12) + \mathbf{k}(-6 \cdot 2 - 7 \cdot -12)
\]
\[
= \mathbf{i}(0 - 4) - \mathbf{j}(0 +
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning