Find the area and arc length 1) 11 ft 3) 315 16 ft

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

My professor never uploaded the correct review answer key and the test is tomorrow! Any help appreciated.

### Geometry and Trigonometry Exercise

**Find the area and arc length:**

1. A sector of a circle with:
   - Radius = 11 ft
   - Central angle = 315°

2. A sector of a circle with:
   - Radius = 13 ft
   - Central angle = 270°

3. A sector of a circle with:
   - Radius = 16 ft
   - Central angle = \(\frac{3\pi}{2}\)

4. A sector of a circle with:
   - Radius = 13 in
   - Central angle forming \( 45^\circ \).

5. For a sector with:
   - \( r = 18 \) cm
   - \( \theta = 60^\circ \)

6. For a sector with:
   - \( r = 16 \) m
   - \( \theta = 75^\circ \)

7. For a sector with:
   - \( r = 9 \) ft
   - \( \theta = \frac{7\pi}{4} \)

8. For a sector with:
   - \( r = 14 \) ft
   - \( \theta = \frac{19\pi}{12} \)

---

**Graph the trigonometric functions:**

1. \( y = \sin(2x - \frac{\pi}{4}) \)
2. \( y = -5\sin(x) \)
3. \( y = 4\sin(x) - 1 \)
4. \( y = \sin(x - \frac{\pi}{2}) \)
5. \( y = \cos(2x) + 1 \)
6. \( y = 3\cos(x - \pi) \)
7. \( y = -\cos(x) - 4 \)
8. \( y = 2\cos(x - \frac{\pi}{3}) \)
9. \( y = \tan(4x) \)
10. \( y = 2\tan(x) \)
11. \( y = \tan(x - \frac{\pi}{3}) \)
12. \( y = \tan(x) - 1 \)

---

**Find all of the EXACT trigonometric function values of angle \(\theta\):**

- The terminal point is: \((-3, -4)\)
- The terminal point is
Transcribed Image Text:### Geometry and Trigonometry Exercise **Find the area and arc length:** 1. A sector of a circle with: - Radius = 11 ft - Central angle = 315° 2. A sector of a circle with: - Radius = 13 ft - Central angle = 270° 3. A sector of a circle with: - Radius = 16 ft - Central angle = \(\frac{3\pi}{2}\) 4. A sector of a circle with: - Radius = 13 in - Central angle forming \( 45^\circ \). 5. For a sector with: - \( r = 18 \) cm - \( \theta = 60^\circ \) 6. For a sector with: - \( r = 16 \) m - \( \theta = 75^\circ \) 7. For a sector with: - \( r = 9 \) ft - \( \theta = \frac{7\pi}{4} \) 8. For a sector with: - \( r = 14 \) ft - \( \theta = \frac{19\pi}{12} \) --- **Graph the trigonometric functions:** 1. \( y = \sin(2x - \frac{\pi}{4}) \) 2. \( y = -5\sin(x) \) 3. \( y = 4\sin(x) - 1 \) 4. \( y = \sin(x - \frac{\pi}{2}) \) 5. \( y = \cos(2x) + 1 \) 6. \( y = 3\cos(x - \pi) \) 7. \( y = -\cos(x) - 4 \) 8. \( y = 2\cos(x - \frac{\pi}{3}) \) 9. \( y = \tan(4x) \) 10. \( y = 2\tan(x) \) 11. \( y = \tan(x - \frac{\pi}{3}) \) 12. \( y = \tan(x) - 1 \) --- **Find all of the EXACT trigonometric function values of angle \(\theta\):** - The terminal point is: \((-3, -4)\) - The terminal point is
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning