Find the arclength of the curve z = 3 cos (7t), y = 3 sin(7t) with 0 < t < -cot (71) Question Help: Message instructor Add Work x syntax incomplete.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

help me please

### Problem Statement

Find the arc length of the curve \( x = 3 \cos(7t), y = 3 \sin(7t) \) with \(0 \leq t \leq \frac{\pi}{28}\).

### Submission

- \(-\cot(7t)\)  
  **Status**: Incorrect  
  **Comment**: Syntax incomplete.

### Assistance

- **Question Help**: Message instructor
- **Add Work**: Option available

---

### Explanation

The problem requires finding the arc length of a parametric curve defined by the equations \( x = 3 \cos(7t) \) and \( y = 3 \sin(7t) \) within the given range for the parameter \( t \).

#### To find the arc length of a parametric curve:

Use the formula for the arc length \( L \) of a parametric curve \((x(t), y(t))\) from \( t = a \) to \( t = b \):

\[ L = \int_{a}^{b} \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt \]

Given:
- \( x = 3 \cos(7t) \)
- \( y = 3 \sin(7t) \)
- \( 0 \leq t \leq \frac{\pi}{28} \)

#### Steps to solve:

1. Find \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \):
   
   \[
   \frac{dx}{dt} = \frac{d}{dt} (3 \cos(7t)) = 3 \cdot (-7 \sin(7t)) = -21 \sin(7t)
   \]

   \[
   \frac{dy}{dt} = \frac{d}{dt} (3 \sin(7t)) = 3 \cdot (7 \cos(7t)) = 21 \cos(7t)
   \]

2. Substitute \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \) into the arc length formula:

   \[
   L = \int_{0}^{\frac{\pi}{28}} \sqrt{(-21 \sin
Transcribed Image Text:### Problem Statement Find the arc length of the curve \( x = 3 \cos(7t), y = 3 \sin(7t) \) with \(0 \leq t \leq \frac{\pi}{28}\). ### Submission - \(-\cot(7t)\) **Status**: Incorrect **Comment**: Syntax incomplete. ### Assistance - **Question Help**: Message instructor - **Add Work**: Option available --- ### Explanation The problem requires finding the arc length of a parametric curve defined by the equations \( x = 3 \cos(7t) \) and \( y = 3 \sin(7t) \) within the given range for the parameter \( t \). #### To find the arc length of a parametric curve: Use the formula for the arc length \( L \) of a parametric curve \((x(t), y(t))\) from \( t = a \) to \( t = b \): \[ L = \int_{a}^{b} \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt \] Given: - \( x = 3 \cos(7t) \) - \( y = 3 \sin(7t) \) - \( 0 \leq t \leq \frac{\pi}{28} \) #### Steps to solve: 1. Find \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \): \[ \frac{dx}{dt} = \frac{d}{dt} (3 \cos(7t)) = 3 \cdot (-7 \sin(7t)) = -21 \sin(7t) \] \[ \frac{dy}{dt} = \frac{d}{dt} (3 \sin(7t)) = 3 \cdot (7 \cos(7t)) = 21 \cos(7t) \] 2. Substitute \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \) into the arc length formula: \[ L = \int_{0}^{\frac{\pi}{28}} \sqrt{(-21 \sin
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning