Find f' f(x) dx if 3 f(x) = for æ < 3 for x > 3.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
To solve the integral \( \int_{0}^{5} f(x) \, dx \) where 

\[
f(x) = 
\begin{cases} 
3 & \text{for } x < 3 \\
x & \text{for } x \geq 3 
\end{cases}
\]

we need to evaluate the integral by considering the piecewise definition of \( f(x) \).

### Steps to Solve:

1. **Break the Integral at the Point of Discontinuity:**

   The function \( f(x) \) changes its definition at \( x = 3 \). Thus, we split the integral into two parts:

   \[
   \int_{0}^{5} f(x) \, dx = \int_{0}^{3} 3 \, dx + \int_{3}^{5} x \, dx
   \]

2. **Evaluate Each Integral Separately:**

   - For the first integral \( \int_{0}^{3} 3 \, dx \):

     - Treating 3 as a constant, the integral is:

       \[
       \int_{0}^{3} 3 \, dx = 3x \Big|_{0}^{3} = 3(3) - 3(0) = 9
       \]

   - For the second integral \( \int_{3}^{5} x \, dx \):

     - The integral of \( x \) is:

       \[
       \int_{3}^{5} x \, dx = \frac{x^2}{2} \Big|_{3}^{5} = \left(\frac{5^2}{2} - \frac{3^2}{2}\right) = \left(\frac{25}{2} - \frac{9}{2}\right) = \frac{16}{2} = 8
       \]

3. **Add the Results Together:**

   Combining the results of the two integrals gives

   \[
   \int_{0}^{5} f(x) \, dx = 9 + 8 = 17
   \]

Thus, the integral of the function from 0 to 5 is 17.
Transcribed Image Text:To solve the integral \( \int_{0}^{5} f(x) \, dx \) where \[ f(x) = \begin{cases} 3 & \text{for } x < 3 \\ x & \text{for } x \geq 3 \end{cases} \] we need to evaluate the integral by considering the piecewise definition of \( f(x) \). ### Steps to Solve: 1. **Break the Integral at the Point of Discontinuity:** The function \( f(x) \) changes its definition at \( x = 3 \). Thus, we split the integral into two parts: \[ \int_{0}^{5} f(x) \, dx = \int_{0}^{3} 3 \, dx + \int_{3}^{5} x \, dx \] 2. **Evaluate Each Integral Separately:** - For the first integral \( \int_{0}^{3} 3 \, dx \): - Treating 3 as a constant, the integral is: \[ \int_{0}^{3} 3 \, dx = 3x \Big|_{0}^{3} = 3(3) - 3(0) = 9 \] - For the second integral \( \int_{3}^{5} x \, dx \): - The integral of \( x \) is: \[ \int_{3}^{5} x \, dx = \frac{x^2}{2} \Big|_{3}^{5} = \left(\frac{5^2}{2} - \frac{3^2}{2}\right) = \left(\frac{25}{2} - \frac{9}{2}\right) = \frac{16}{2} = 8 \] 3. **Add the Results Together:** Combining the results of the two integrals gives \[ \int_{0}^{5} f(x) \, dx = 9 + 8 = 17 \] Thus, the integral of the function from 0 to 5 is 17.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning