What is f'(x) if f(x) = -? 40x5 ex

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculating the Derivative of a Function

**Question:**
What is \( f'(x) \) if \( f(x) = \frac{40x^5}{e^x} \)?

**Explanation:**
To find the derivative \( f'(x) \), utilize the quotient rule, which is applicable to functions of the form \( \frac{u(x)}{v(x)} \). The rule states:

\[
f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}
\]

Here, \( u(x) = 40x^5 \) and \( v(x) = e^x \).

**Steps:**

1. **Differentiate \( u(x) = 40x^5 \):**
   - \( u'(x) = 200x^4 \).

2. **Differentiate \( v(x) = e^x \):**
   - \( v'(x) = e^x \).

3. **Apply the Quotient Rule:**
   - Plug the derivatives into the quotient rule formula:
   \[
   f'(x) = \frac{(200x^4) \cdot (e^x) - (40x^5) \cdot (e^x)}{(e^x)^2}
   \]

4. **Simplify:**
   - Combine and factor the numerator:
   \[
   f'(x) = \frac{e^x(200x^4 - 40x^5)}{e^{2x}}
   \]
   - Simplify further:
   \[
   f'(x) = \frac{e^x \cdot 40x^4(5 - x)}{e^{2x}}
   \]

5. **Final Expression:**
   - Cancel \( e^x \):
   \[
   f'(x) = \frac{40x^4(5 - x)}{e^x}
   \]

Thus, the derivative \( f'(x) = \frac{40x^4(5 - x)}{e^x} \). 

This solution showcases the application of the quotient rule and simplification steps in derivative calculation.
Transcribed Image Text:### Calculating the Derivative of a Function **Question:** What is \( f'(x) \) if \( f(x) = \frac{40x^5}{e^x} \)? **Explanation:** To find the derivative \( f'(x) \), utilize the quotient rule, which is applicable to functions of the form \( \frac{u(x)}{v(x)} \). The rule states: \[ f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} \] Here, \( u(x) = 40x^5 \) and \( v(x) = e^x \). **Steps:** 1. **Differentiate \( u(x) = 40x^5 \):** - \( u'(x) = 200x^4 \). 2. **Differentiate \( v(x) = e^x \):** - \( v'(x) = e^x \). 3. **Apply the Quotient Rule:** - Plug the derivatives into the quotient rule formula: \[ f'(x) = \frac{(200x^4) \cdot (e^x) - (40x^5) \cdot (e^x)}{(e^x)^2} \] 4. **Simplify:** - Combine and factor the numerator: \[ f'(x) = \frac{e^x(200x^4 - 40x^5)}{e^{2x}} \] - Simplify further: \[ f'(x) = \frac{e^x \cdot 40x^4(5 - x)}{e^{2x}} \] 5. **Final Expression:** - Cancel \( e^x \): \[ f'(x) = \frac{40x^4(5 - x)}{e^x} \] Thus, the derivative \( f'(x) = \frac{40x^4(5 - x)}{e^x} \). This solution showcases the application of the quotient rule and simplification steps in derivative calculation.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning