Find a vector of magnitude 9 in the direction of v = <- 3, 2>. O <-3√13, 2√13) O-27, 18) 9 <-3,2) 13 1 V <-3,2) 13 O None of these

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem: Find a Vector of Specific Magnitude in a Given Direction**

**Question:**
Find a vector of magnitude 9 in the direction of \(\mathbf{v} = \langle -3, 2 \rangle\).

**Choices:**
- \(\langle -3\sqrt{13}, 2\sqrt{13} \rangle\)
- \(\langle -27, 18 \rangle\)
- \(\dfrac{9}{\sqrt{13}} \langle -3, 2 \rangle\)
- \(\dfrac{1}{\sqrt{13}} \langle -3, 2 \rangle\)
- None of these

**Explanation:**
To solve this problem, find a vector with a specified magnitude in the direction of a given vector. This involves vector normalization and scaling:

1. **Normalize the vector \(\mathbf{v}\):**
   \[
   \|\mathbf{v}\| = \sqrt{(-3)^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}
   \]
   The unit vector in the direction of \(\mathbf{v}\) is:
   \[
   \mathbf{u} = \dfrac{\mathbf{v}}{\|\mathbf{v}\|} = \dfrac{\langle -3, 2 \rangle}{\sqrt{13}} = \left\langle \dfrac{-3}{\sqrt{13}}, \dfrac{2}{\sqrt{13}} \right\rangle
   \]

2. **Scale the unit vector by the magnitude 9:**
   \[
   \mathbf{u}_{new} = 9 \mathbf{u} = 9 \left\langle \dfrac{-3}{\sqrt{13}}, \dfrac{2}{\sqrt{13}} \right\rangle = \left\langle \dfrac{9 \cdot (-3)}{\sqrt{13}}, \dfrac{9 \cdot 2}{\sqrt{13}} \right\rangle = \left\langle \dfrac{-27}{\sqrt{13}}, \dfrac{18}{\sqrt{13}} \right\rangle
   \]

After analyzing the given choices, the correct simplified option is:
\[
\boxed{\
Transcribed Image Text:**Problem: Find a Vector of Specific Magnitude in a Given Direction** **Question:** Find a vector of magnitude 9 in the direction of \(\mathbf{v} = \langle -3, 2 \rangle\). **Choices:** - \(\langle -3\sqrt{13}, 2\sqrt{13} \rangle\) - \(\langle -27, 18 \rangle\) - \(\dfrac{9}{\sqrt{13}} \langle -3, 2 \rangle\) - \(\dfrac{1}{\sqrt{13}} \langle -3, 2 \rangle\) - None of these **Explanation:** To solve this problem, find a vector with a specified magnitude in the direction of a given vector. This involves vector normalization and scaling: 1. **Normalize the vector \(\mathbf{v}\):** \[ \|\mathbf{v}\| = \sqrt{(-3)^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13} \] The unit vector in the direction of \(\mathbf{v}\) is: \[ \mathbf{u} = \dfrac{\mathbf{v}}{\|\mathbf{v}\|} = \dfrac{\langle -3, 2 \rangle}{\sqrt{13}} = \left\langle \dfrac{-3}{\sqrt{13}}, \dfrac{2}{\sqrt{13}} \right\rangle \] 2. **Scale the unit vector by the magnitude 9:** \[ \mathbf{u}_{new} = 9 \mathbf{u} = 9 \left\langle \dfrac{-3}{\sqrt{13}}, \dfrac{2}{\sqrt{13}} \right\rangle = \left\langle \dfrac{9 \cdot (-3)}{\sqrt{13}}, \dfrac{9 \cdot 2}{\sqrt{13}} \right\rangle = \left\langle \dfrac{-27}{\sqrt{13}}, \dfrac{18}{\sqrt{13}} \right\rangle \] After analyzing the given choices, the correct simplified option is: \[ \boxed{\
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,