What vector v is given by the coordinate vector 3 [1] 6 B={[-3 8 7], [7 1 6], [7 -4 9]}. ?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Vector Representation Using a Basis**

This section explores how to determine a vector \( \mathbf{v} \) given its coordinate vector with respect to a specific basis.

### Problem Statement

We are given a coordinate vector:
\[
\begin{bmatrix}
6 \\
3 \\
6
\end{bmatrix}_{\mathcal{B}}
\]

Our task is to find the vector \( \mathbf{v} \) associated with this coordinate vector based on the specified basis \( \mathcal{B} \).

### Basis \( \mathcal{B} \)

The basis \(\mathcal{B}\) is defined as:
\[
\mathcal{B} = \left\{ 
\begin{bmatrix} -3 \\ 8 \\ 7 \end{bmatrix}, 
\begin{bmatrix} 7 \\ 1 \\ 6 \end{bmatrix}, 
\begin{bmatrix} 7 \\ -4 \\ 9 \end{bmatrix} 
\right\}
\]

### Explanation

To find the vector \( \mathbf{v} \), we use the coordinate vector and the given basis, applying the concept that the coordinate vector represents a linear combination of the basis vectors.

\[
\mathbf{v} = 6 \begin{bmatrix} -3 \\ 8 \\ 7 \end{bmatrix} + 3 \begin{bmatrix} 7 \\ 1 \\ 6 \end{bmatrix} + 6 \begin{bmatrix} 7 \\ -4 \\ 9 \end{bmatrix}
\]

By calculating this expression, we determine the vector \( \mathbf{v} \) in the standard coordinate system.
Transcribed Image Text:**Vector Representation Using a Basis** This section explores how to determine a vector \( \mathbf{v} \) given its coordinate vector with respect to a specific basis. ### Problem Statement We are given a coordinate vector: \[ \begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix}_{\mathcal{B}} \] Our task is to find the vector \( \mathbf{v} \) associated with this coordinate vector based on the specified basis \( \mathcal{B} \). ### Basis \( \mathcal{B} \) The basis \(\mathcal{B}\) is defined as: \[ \mathcal{B} = \left\{ \begin{bmatrix} -3 \\ 8 \\ 7 \end{bmatrix}, \begin{bmatrix} 7 \\ 1 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ -4 \\ 9 \end{bmatrix} \right\} \] ### Explanation To find the vector \( \mathbf{v} \), we use the coordinate vector and the given basis, applying the concept that the coordinate vector represents a linear combination of the basis vectors. \[ \mathbf{v} = 6 \begin{bmatrix} -3 \\ 8 \\ 7 \end{bmatrix} + 3 \begin{bmatrix} 7 \\ 1 \\ 6 \end{bmatrix} + 6 \begin{bmatrix} 7 \\ -4 \\ 9 \end{bmatrix} \] By calculating this expression, we determine the vector \( \mathbf{v} \) in the standard coordinate system.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,