Figure 3 shows a refrigeration system using Refrigerant-134a as the refrigerant has a compressor that consumes 800 W of power when operational. The refrigerant enters the evaporator at 100 kPa as saturated mixture of quality 25% and leaves the condenser the same pressure as at a temperature of -26°C. Determine the rate of heat rejected (QH) at the condenser and the COP of the refrigerator. The mass flow rate of the refrigerant is 0.005 kg/s. condenser expansion valve compressor evaporator Figure 3: Refrigeration system
Figure 3 shows a refrigeration system using Refrigerant-134a as the refrigerant has a compressor that consumes 800 W of power when operational. The refrigerant enters the evaporator at 100 kPa as saturated mixture of quality 25% and leaves the condenser the same pressure as at a temperature of -26°C. Determine the rate of heat rejected (QH) at the condenser and the COP of the refrigerator. The mass flow rate of the refrigerant is 0.005 kg/s. condenser expansion valve compressor evaporator Figure 3: Refrigeration system
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
100%
![(a)
Figure 3 shows a refrigeration system using Refrigerant-134a as the refrigerant has a
compressor that consumes 800 W of power when operational. The refrigerant enters the
evaporator at 100 kPa as saturated mixture of quality 25% and leaves the condenser the same
pressure as at a temperature of -26°C.
Determine the rate of heat rejected (Q.) at the condenser and the COP of the refrigerator. The
mass flow rate of the refrigerant is 0.005 kg/s.
condenser
expansion
compressor
valve
evaporator
Figure 3: Refrigeration system
(b)
After graduation, you decided to work overseas to experience living in a country with four
seasons. Your neighbour, knowing that you are an engineer asked your help to install a heat
pump system for his house. He wanted to always maintain the temperature in his house at
24°C during winter. In that area during winters, average outside temperature is -3°C. He also
has an underground water well with average water temperature of 10°C during winter.
You estimated that the heat losses from the house under the average outside temperature to
be 75000 kJ/h. Investigate the most economical mean to power the heat pump (by calculating
the minimum power required) if you can choose to extract heat from either:
i.
The outside air at average temperature of -3°C
ii.
The well water at 10°c
State the reasoning for your calculations.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1d6d14b6-a59c-4d90-a236-f0ed71996063%2Fb4708e90-333e-4d5d-839b-d694b93a8a31%2Frrj3yma_processed.png&w=3840&q=75)
Transcribed Image Text:(a)
Figure 3 shows a refrigeration system using Refrigerant-134a as the refrigerant has a
compressor that consumes 800 W of power when operational. The refrigerant enters the
evaporator at 100 kPa as saturated mixture of quality 25% and leaves the condenser the same
pressure as at a temperature of -26°C.
Determine the rate of heat rejected (Q.) at the condenser and the COP of the refrigerator. The
mass flow rate of the refrigerant is 0.005 kg/s.
condenser
expansion
compressor
valve
evaporator
Figure 3: Refrigeration system
(b)
After graduation, you decided to work overseas to experience living in a country with four
seasons. Your neighbour, knowing that you are an engineer asked your help to install a heat
pump system for his house. He wanted to always maintain the temperature in his house at
24°C during winter. In that area during winters, average outside temperature is -3°C. He also
has an underground water well with average water temperature of 10°C during winter.
You estimated that the heat losses from the house under the average outside temperature to
be 75000 kJ/h. Investigate the most economical mean to power the heat pump (by calculating
the minimum power required) if you can choose to extract heat from either:
i.
The outside air at average temperature of -3°C
ii.
The well water at 10°c
State the reasoning for your calculations.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY