Fig.1. Airflow on a cylinder U/2 F pU²bL 1/2 [4/2 1. When a uniform stream flows past an immersed thick cylinder, a broad low-velocity wake is created downstream, idealized as a V shape in Fig. 1. Pressures p1 and p2 are approximately equal. (a) If the flow is two-dimensional and incompressible, with width b into the paper, derive a formula for the drag force F on the cylinder. (b) Rewrite your result in the form of a dimensionless drag coefficient based on body length CD
Fig.1. Airflow on a cylinder U/2 F pU²bL 1/2 [4/2 1. When a uniform stream flows past an immersed thick cylinder, a broad low-velocity wake is created downstream, idealized as a V shape in Fig. 1. Pressures p1 and p2 are approximately equal. (a) If the flow is two-dimensional and incompressible, with width b into the paper, derive a formula for the drag force F on the cylinder. (b) Rewrite your result in the form of a dimensionless drag coefficient based on body length CD
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![U
L
CD
Fig.1. Airflow on a cylinder
U
U
U/2
L/2
L/2
1. When a uniform stream flows past an immersed thick cylinder, a broad low-velocity wake is
created downstream, idealized as a V shape in Fig. 1. Pressures p1 and p2 are approximately equal.
(a) If the flow is two-dimensional and incompressible, with width b into the paper, derive a formula
for the drag force F on the cylinder.
(b) Rewrite your result in the form of a dimensionless drag coefficient based on body length
F
pU²bL](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F453e2dee-5bad-4d2e-a71f-6b8eeb7e8b02%2F46cc371b-10bd-4cf7-b327-0cf288f81646%2F3rmbh8_processed.png&w=3840&q=75)
Transcribed Image Text:U
L
CD
Fig.1. Airflow on a cylinder
U
U
U/2
L/2
L/2
1. When a uniform stream flows past an immersed thick cylinder, a broad low-velocity wake is
created downstream, idealized as a V shape in Fig. 1. Pressures p1 and p2 are approximately equal.
(a) If the flow is two-dimensional and incompressible, with width b into the paper, derive a formula
for the drag force F on the cylinder.
(b) Rewrite your result in the form of a dimensionless drag coefficient based on body length
F
pU²bL
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY