fG) ΣΑ () and f'(2) =Efn(x). %3D n=1 n=1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(Term-by-term Differentiability Theorem). Let fn be differentiable functions defined on an interval A, and assume ∞ n=1 fn(x) converges uniformly to a limit g(x) on A. If there exists a point x0 ∈ [a, b] where ∞ n=1 fn(x0) converges, then the series ∞ n=1 fn(x) converges uniformly to a differentiable function f(x) satisfying f(x) = g(x) on A. In other words, Proof. Apply the stronger form of the Differentiable Limit Theorem (Theorem
6.3.3) to the partial sums sk = f1 + f2 + · · · + fk. Observe that Theorem 5.2.4 implies that sk = f1 + f2 + · · · + fk . In the vocabulary of infinite series, the Cauchy Criterion takes the following
form.

fG) ΣΑ ()
and f'(2) =Efn(x).
%3D
n=1
n=1
Transcribed Image Text:fG) ΣΑ () and f'(2) =Efn(x). %3D n=1 n=1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Power Series
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,