Express the line integral in terms of t 2ry dr + 4x²y dy = 1, 2zy dz + 4z'y dy + 2ry dr + 4x?y dy + 2ry dr + 4x?y dy Σ dt + Σ dt + E dt. where a = Σ Evaluate the integral 2ry dr + 4x²y dy = Σ Now using Green's Theorem express 2xy dr + 4x*y dy as a double integral $ 2ry dz + 4x²y dy = ΣdA Given the shape of the region of integration, how should we evaluate the above integral? OA. Rectangular Coordinates: dy dr OB. Polar Coordinates: dr de OC. None of the above M M
Express the line integral in terms of t 2ry dr + 4x²y dy = 1, 2zy dz + 4z'y dy + 2ry dr + 4x?y dy + 2ry dr + 4x?y dy Σ dt + Σ dt + E dt. where a = Σ Evaluate the integral 2ry dr + 4x²y dy = Σ Now using Green's Theorem express 2xy dr + 4x*y dy as a double integral $ 2ry dz + 4x²y dy = ΣdA Given the shape of the region of integration, how should we evaluate the above integral? OA. Rectangular Coordinates: dy dr OB. Polar Coordinates: dr de OC. None of the above M M
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Evaluate the line integral by following the given steps.
2xy dx + 4x?y dy
C is the triangle with vertices (0, 0),(3,0), and (0, 5).
The curve C can split up into each one of its sides (shown in the picture below)
H(t)
L(t)
B(t)
$ 2ry dr + 4x?y dy
2xy dx + 4x?y dy +
2ry dx + 4x?y dy +
2ry da + 4x?y dy
Parametrize each side of the triangle
B(t)
<3t.0>
Σ
te
Σ
Σ
H(t) = <3-3t, t>
Σ
te
Σ
1
Σ
L(t) = <0,1-t>
Σ
te
Σ.
Σ
(use the most natural parametrizations and remember which direction you need to go)
Express the line integral in terms of t
2ay dx + 4x?y dy
2ry dx + 4x?y dy +
2xy dx + 4x?y dy +
2xy dx + 4x?y dy
Σ dt +
E dt +
Σdt .](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0695e04c-6177-4dae-ae8e-62e62853c8ae%2Ff4edde91-c8fc-4cff-81bb-965b5447e31e%2Fz17q5qi_processed.png&w=3840&q=75)
Transcribed Image Text:Evaluate the line integral by following the given steps.
2xy dx + 4x?y dy
C is the triangle with vertices (0, 0),(3,0), and (0, 5).
The curve C can split up into each one of its sides (shown in the picture below)
H(t)
L(t)
B(t)
$ 2ry dr + 4x?y dy
2xy dx + 4x?y dy +
2ry dx + 4x?y dy +
2ry da + 4x?y dy
Parametrize each side of the triangle
B(t)
<3t.0>
Σ
te
Σ
Σ
H(t) = <3-3t, t>
Σ
te
Σ
1
Σ
L(t) = <0,1-t>
Σ
te
Σ.
Σ
(use the most natural parametrizations and remember which direction you need to go)
Express the line integral in terms of t
2ay dx + 4x?y dy
2ry dx + 4x?y dy +
2xy dx + 4x?y dy +
2xy dx + 4x?y dy
Σ dt +
E dt +
Σdt .
![Express the line integral in terms of t
2ry dx + 4x?y dy
2xy dæ + 4x°y dy + :
2xy da + 4a?y dy + /
2xy dr + 4x²y dy
Σ dt +
Σ dt +
E dt.
where
a =
Σ
b =
Σ
Evaluate the integral
2xy dx + 4x?y dy =
Σ
Now using Green's Theorem express
2xy da + 4x²y dy as a double integral
2xy dr + 4x?y dy =
ΣdA
Given the shape of the region of integration, how should we evaluate the above integral?
OA. Rectangular Coordinates: dy dx
OB. Polar Coordinates: dr de
OC. None of the above](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0695e04c-6177-4dae-ae8e-62e62853c8ae%2Ff4edde91-c8fc-4cff-81bb-965b5447e31e%2Fae9vhqq_processed.png&w=3840&q=75)
Transcribed Image Text:Express the line integral in terms of t
2ry dx + 4x?y dy
2xy dæ + 4x°y dy + :
2xy da + 4a?y dy + /
2xy dr + 4x²y dy
Σ dt +
Σ dt +
E dt.
where
a =
Σ
b =
Σ
Evaluate the integral
2xy dx + 4x?y dy =
Σ
Now using Green's Theorem express
2xy da + 4x²y dy as a double integral
2xy dr + 4x?y dy =
ΣdA
Given the shape of the region of integration, how should we evaluate the above integral?
OA. Rectangular Coordinates: dy dx
OB. Polar Coordinates: dr de
OC. None of the above
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)