Express the line integral in terms of t 2ry dr + 4x²y dy = 1, 2zy dz + 4z'y dy + 2ry dr + 4x?y dy + 2ry dr + 4x?y dy Σ dt + Σ dt + E dt. where a = Σ Evaluate the integral 2ry dr + 4x²y dy = Σ Now using Green's Theorem express 2xy dr + 4x*y dy as a double integral $ 2ry dz + 4x²y dy = ΣdA Given the shape of the region of integration, how should we evaluate the above integral? OA. Rectangular Coordinates: dy dr OB. Polar Coordinates: dr de OC. None of the above M M

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Evaluate the line integral by following the given steps.
2xy dx + 4x?y dy
C is the triangle with vertices (0, 0),(3,0), and (0, 5).
The curve C can split up into each one of its sides (shown in the picture below)
H(t)
L(t)
B(t)
$ 2ry dr + 4x?y dy
2xy dx + 4x?y dy +
2ry dx + 4x?y dy +
2ry da + 4x?y dy
Parametrize each side of the triangle
B(t)
<3t.0>
Σ
te
Σ
Σ
H(t) = <3-3t, t>
Σ
te
Σ
1
Σ
L(t) = <0,1-t>
Σ
te
Σ.
Σ
(use the most natural parametrizations and remember which direction you need to go)
Express the line integral in terms of t
2ay dx + 4x?y dy
2ry dx + 4x?y dy +
2xy dx + 4x?y dy +
2xy dx + 4x?y dy
Σ dt +
E dt +
Σdt .
Transcribed Image Text:Evaluate the line integral by following the given steps. 2xy dx + 4x?y dy C is the triangle with vertices (0, 0),(3,0), and (0, 5). The curve C can split up into each one of its sides (shown in the picture below) H(t) L(t) B(t) $ 2ry dr + 4x?y dy 2xy dx + 4x?y dy + 2ry dx + 4x?y dy + 2ry da + 4x?y dy Parametrize each side of the triangle B(t) <3t.0> Σ te Σ Σ H(t) = <3-3t, t> Σ te Σ 1 Σ L(t) = <0,1-t> Σ te Σ. Σ (use the most natural parametrizations and remember which direction you need to go) Express the line integral in terms of t 2ay dx + 4x?y dy 2ry dx + 4x?y dy + 2xy dx + 4x?y dy + 2xy dx + 4x?y dy Σ dt + E dt + Σdt .
Express the line integral in terms of t
2ry dx + 4x?y dy
2xy dæ + 4x°y dy + :
2xy da + 4a?y dy + /
2xy dr + 4x²y dy
Σ dt +
Σ dt +
E dt.
where
a =
Σ
b =
Σ
Evaluate the integral
2xy dx + 4x?y dy =
Σ
Now using Green's Theorem express
2xy da + 4x²y dy as a double integral
2xy dr + 4x?y dy =
ΣdA
Given the shape of the region of integration, how should we evaluate the above integral?
OA. Rectangular Coordinates: dy dx
OB. Polar Coordinates: dr de
OC. None of the above
Transcribed Image Text:Express the line integral in terms of t 2ry dx + 4x?y dy 2xy dæ + 4x°y dy + : 2xy da + 4a?y dy + / 2xy dr + 4x²y dy Σ dt + Σ dt + E dt. where a = Σ b = Σ Evaluate the integral 2xy dx + 4x?y dy = Σ Now using Green's Theorem express 2xy da + 4x²y dy as a double integral 2xy dr + 4x?y dy = ΣdA Given the shape of the region of integration, how should we evaluate the above integral? OA. Rectangular Coordinates: dy dx OB. Polar Coordinates: dr de OC. None of the above
Expert Solution
steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,