6. Let z = 5e** sin y . Compute the differential dz. A) dz = 20et* sin y dx + 20e** cos y dy B) dz = 20e" sin x dx + 20e³" sin x dy C) dz = 20e** sin y dx +5e** sin y dy D) dz = 20e** sin y dx +5e** cos y dy E) dz = 20e** cos y dx+ 5e** sin y dy 4x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
6. Let \( z = 5e^{4x} \sin y \). Compute the differential \( dz \).

A) \( dz = 20e^{4x} \sin y \, dx + 20e^{4x} \cos y \, dy \)

B) \( dz = 20e^{3y} \sin x \, dx + 20e^{3y} \sin x \, dy \)

C) \( dz = 20e^{4x} \sin y \, dx + 5e^{4x} \sin y \, dy \)

D) \( dz = 20e^{4x} \sin y \, dx + 5e^{4x} \cos y \, dy \)

E) \( dz = 20e^{4x} \cos y \, dx + 5e^{4x} \sin y \, dy \)
Transcribed Image Text:6. Let \( z = 5e^{4x} \sin y \). Compute the differential \( dz \). A) \( dz = 20e^{4x} \sin y \, dx + 20e^{4x} \cos y \, dy \) B) \( dz = 20e^{3y} \sin x \, dx + 20e^{3y} \sin x \, dy \) C) \( dz = 20e^{4x} \sin y \, dx + 5e^{4x} \sin y \, dy \) D) \( dz = 20e^{4x} \sin y \, dx + 5e^{4x} \cos y \, dy \) E) \( dz = 20e^{4x} \cos y \, dx + 5e^{4x} \sin y \, dy \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,